Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.137

A meshfree adaptive procedure for shells in the sheet metal forming applications  

Guo, Yong (Livermore Software Technology Corporation)
Wu, C.T. (Livermore Software Technology Corporation)
Park, C.K. (National Crash Analysis Center (NCAC), The George Washington University)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 137-156 More about this Journal
Abstract
In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.
Keywords
meshfree; convex; shell; adaptivity; metal forming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation", Comput. Meth. Appl. Mech. Eng., 193(12-14), 1065-1083.   DOI   ScienceOn
2 Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of hermite reproducing kernel galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48(1), 47-63.   DOI
3 Wang, D. and Wu, Y. (2008), "An efficient galerkin meshfree analysis of shear deformable cylindrical panels", Interact. Multiscale Mech., 1(3), 339-355.   DOI   ScienceOn
4 Wang, H.P., Wu, C.T., Guo, Y. and Botkin, M.E. (2009), "A coupled meshfree/finite element method for automotive crashworthiness simulations", Int. J. Impact Eng., 36(10-11), 1210-1222.   DOI   ScienceOn
5 Wu, C.T. and Guo, Y. (2002), Development of coupled finite element/mesh-free method and mesh-free shell formulation, Technical Report, GM R&D Center.
6 Wu, C.T. and Guo, Y. (2004), Development of an adaptive mesh-free shell algorithm and a parallelized coupled finite element/mesh-free shell method incorporating thickness stress for explicit dynamic analysis, Technical Report, GM R&D Center.
7 Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2(2), 147-169.
8 Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized approximation for the meshfree analysis of solids", Int. J. Numer. Meth. Eng., 85(6), 693-722.   DOI   ScienceOn
9 Wu, C.T. and Hu, W. (2011), "Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Methods Appl. Mech. Eng., 200(45-46), 2991-3010.   DOI   ScienceOn
10 Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995a), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Meth. Eng., 38(10), 1655-1679.   DOI   ScienceOn
11 Liu, W.K., Jun, S. and Zhang, Y.F. (1995b), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fluids, 20(8-9), 1081-1106.   DOI   ScienceOn
12 Mar, A. and Hicks, M.A. (1996), "A benchmark computational study of finite element error estimation", Int. J. Numer. Meth. Eng., 39(23), 3969-3983.   DOI
13 Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150.   DOI   ScienceOn
14 Ortiz, M. and Quigley, J.J. (1991), "Adaptive mesh refinement in strain-localization problems", Comput. Meth. Appl. Mech. Eng., 90(1-3), 781-809.   DOI   ScienceOn
15 Pannachet, T., Sluys, L.J. and Askes, H. (2008), "Error estimation and adaptivity for discontinuous failure", Int. J. Numer. Meth. Eng., 78(5), 528-563.
16 Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation", Finite Elem. Anal. Des., 47(7), 683-697.   DOI   ScienceOn
17 Rabczuk, T. and Belystchko, T. (2005), "Adaptivity for structured meshfree particle methods in 2D and 3D", Int. J. Numer. Meth. Eng., 63(11), 1559-1582.   DOI   ScienceOn
18 Riccius, J., Schweizerhof, K. and Baumann, M. (1997), "Combination of adaptivity and mesh smoothing for the finite element analysis of shell intersections", Int. J. Numer. Meth. Eng., 40(13), 2459-2474.   DOI
19 Sheffer, A. and de Sturler, E. (2001), "Parameterization of faceted surfaces for meshing using angle-based flattening", Eng. Comput., 17(3), 326-337.   DOI   ScienceOn
20 Shepard, D. (1968), "A two-dimensional interpolation function for irregularly-spaced data", Proceedings of the 1968 ACM National Conference, New York, 517-524, DOI: 10.1145/800186.810616.   DOI
21 Belytschko, T. and Tabbara, M. (1993), "H-adaptive finite element methods for dynamic problems, with emphasis on localization", Int. J. Numer. Meth. Eng., 36(24), 4245-4265.   DOI   ScienceOn
22 Blacker, T.D. and Stephenson, M.B. (1991), "Paving: a new approach to automated quadrilateral mesh generation", Int. J. Numer. Meth. Eng., 32(4), 811-847.   DOI
23 Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of non-linear structures", Comput. Methods Appl. Mech. Eng., 139(1-4), 195-227.   DOI   ScienceOn
24 Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50(5), 435-466.   DOI   ScienceOn
25 Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates", Int. J. Numer. Meth. Eng., 68(2), 151-172.   DOI   ScienceOn
26 Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21(2), 91-100.   DOI   ScienceOn
27 Deb, A., Prevost, J.H. and Loret, B. (1996), "Adaptive meshing for dynamic strain localization", Comput. Methods Appl. Mech. Eng., 137(3), 285-306.   DOI   ScienceOn
28 Hallquist, J.O. (2003), LS-DYNA Theory manual.
29 Hill, R. (1948), "A theory of the yielding and plastic flow of anisotropic metals", Proceedings of the Royal Society of London, Series A, 193, 281.   DOI
30 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158.   DOI   ScienceOn
31 Liu, G.R. and Tu, Z.H. (2002), "An adaptive procedure based on background cells for meshless methods", Comput. Methods Appl. Mech. Eng., 191(17-18), 1923-1943.   DOI   ScienceOn
32 Liu, G.R. and Zhang, G.Y. (2008), "Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM)", Int. J. Numer. Meth. Eng., 74(7), 1128-1161.   DOI   ScienceOn
33 Arroyo, M. and Ortiz, M. (2006), "Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods", Int. J. Numer. Meth. Eng., 65(13), 2167-2202.   DOI   ScienceOn
34 Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear finite elements for continua and structures, John Wiley & Sons, LTD, Chichester, West Sussex, England.
35 Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22(2), 117-127.   DOI   ScienceOn
36 Babuska, I. and Rheinboldt, W.C. (1978), "A posteriori error estimates for the finite element method", Int. J. Numer. Meth. Eng., 12(10), 1597-1615.   DOI
37 Baumann, M. and Schweizerhof, K. (1997), "Adaptive mesh generation of arbitrarily curved shell structures", Comput. Struct., 64(1-4), 209-220.   DOI   ScienceOn
38 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256.   DOI   ScienceOn
39 Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24(2), 337-357.   DOI   ScienceOn
40 Wu, C.T., Hu, W. and Chen, J.S. (2012), "Meshfree-enriched finite element methods for the compressible and near-incompressible elasticity", Int. J. Numer. Meth. Eng., 90(7), 882-914.   DOI   ScienceOn
41 Sukumar, N. (2004), "Construction of polygonal interpolants: a maximum entropy approach", Int. J. Numer. Meth. Eng., 61(12), 2159-2181.   DOI   ScienceOn