DOI QR코드

DOI QR Code

On Generalized Integral Operator Based on Salagean Operator

  • Received : 2006.04.03
  • Published : 2008.09.30

Abstract

Let A(p) be the class of functions $f\;:\;z^p\;+\;\sum\limits_{j=1}^{\infty}a_jz^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z)\;=\;z^p+\sum\limits_{j=1}^{\infty}(p+j)^{n+p-1}z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1}\;*\;f_{n+p-1}^{-1}=\frac{z^p}{(1-z)^{n+p}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if ${\int}_0^{2\pi}\|\frac{Re\;p(z)-\rho}{p-\rho}\|\;d\theta\;\leq\;k{\pi}$, where $z=re^{i\theta}$, $k\;\geq\;2$ and $0\;{\leq}\;\rho\;{\leq}\;p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)\;\;=\;f_{n+p-1}^{-1}\;*\;f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

Keywords

References

  1. M. Acu, A preserving property of the generalized Bernardi integral operator, General Mathematics, 12(3)(2004), 67-71.
  2. M. K. Aouf and B. A. Al-amri, On certain fractional operators for certain subclasses of prestarlike functions defined by Salagean operator, Journal of Fractional Calculus, 22(2002), 47-56.
  3. K. Inayat Noor, On subclasses of close-to-convex functions of higher order, Internal. J. Math. Sc., 15(1992), 279-290. https://doi.org/10.1155/S016117129200036X
  4. K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
  5. S. Ponnusamy, Differential subordination and Bazievic functions, preprint.
  6. G. Salagean, Subclasses of univalent functions, Complex Analysis, Fifth Roumanian-Finish Seminar, Lecture Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372. https://doi.org/10.1007/BFb0066543
  7. R. Singh and S. Sing, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152. https://doi.org/10.1090/S0002-9939-1989-0994388-6