A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

N. D. Sangle ${ }^{1}$, A. N. Metkari ${ }^{2}$ and S. B. Joshi ${ }^{3}$
${ }^{1}$ Department of Mathematics, D.Y. Patil College of Engineering and Technology Kasaba Bawada, Kolhapur, Maharashtra 416006, India
e-mail: navneet_sangle@rediffmail.com
${ }^{2}$ Research Scholar Department of Mathematics, Visvesvaraya Technological University Belagavi, Karnataka 590018, India
e-mail: anand.metkari@gmail.com
${ }^{3}$ Department of Mathematics, Walchand College of Engineering Sangli, Maharashtra 416415, India
e-mail: joshisb@hotmail.com

Abstract

In this paper, we have introduced a generalized class $S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha), i \in$ $\{0,1\}$ of harmonic univalent functions in unit disc \mathbb{U}, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$. We further obtained extreme points, bounds and a covering result for the class $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$. Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of ϕ and ψ are considered, which lead to various well-known results.

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply connected domain \mathbb{D} is said to be harmonic in \mathbb{D} if both u and v are real harmonic in \mathbb{D}. In any simply connected domain \mathbb{D}, we can write $f=h+\bar{g}$. We call h

[^0]the analytic part and g the co-analytic part of function f. A necessary and sufficient condition for function f to be locally univalent and sense-preserving in \mathbb{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|, z \in \mathbb{D}$ (see [4]).

Denote by S_{H} the class of functions $f=h+\bar{g}$ which are harmonic, univalent and sense-preserving in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in S_{H}$, we may express the analytic functions h and g as

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}, \quad z \in U . \tag{1.1}
\end{equation*}
$$

Therefore

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}, \quad\left|b_{1}\right|<1 .
$$

Note that S_{H} reduces normalized analytic univalent functions to the class if the co-analytic part of function f is identically zero, i.e. $g \equiv 0$. For this class, $f(z)$ may be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

For more basic results on harmonic functions one may refer to the following book by Duren [8] (see also [1],[13],[14],[15]). For $f=h+\bar{g}$ with h and g are of the form (1.1), [2] defined the Al-Oboudi operator D_{γ}^{n} for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, by

$$
\begin{equation*}
D_{\gamma}^{n} f(z)=D_{\gamma}^{n} h(z)+(-1)^{n} \overline{D_{\gamma}^{n} g(z)}, \tag{1.3}
\end{equation*}
$$

where

$$
D_{\gamma}^{n} h(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \gamma]^{n} a_{k} z^{k}, \quad D_{\gamma}^{n} g(z)=\sum_{k=1}^{\infty}[1+(k-1) \gamma]^{n} b_{k} z^{k} .
$$

Several authors such as $[5],[6],[7],[9],[12]$ and [16] introduced and studied various new subclasses of analytic univalent as well as harmonic univalent functions with the help of convolution.

We motivated by the earlier work of Jahangiri et al. [11] and Sharma et al. [17] for subclasses of S_{H}, in this paper, we define a generalized class $S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ of functions $f=h+\bar{g} \in S_{H}$ satisfying for $i \in\{0,1\}$, the condition

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{D_{\gamma}^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D_{\gamma}^{m} g(z) * \psi(z)}}{D_{\gamma}^{n} h(z)+(-1)^{n} \overline{D_{\gamma}^{n} g(z)}}\right\}>\alpha \tag{1.4}
\end{equation*}
$$

where, $m, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \gamma \geq 1, \phi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}$ and $\psi(z)=z+\sum_{k=2}^{\infty} \mu_{k} z^{k}$ are analytic in open unit disk \mathbb{U} with the conditions $\lambda_{k} \geq 1, \mu_{k} \geq 1$. The operator "*" stands for the Hadamard product or convolution of two power series.

We further denote by $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, a subclass of $S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ consisting of functions $f=h+\bar{g} \in S_{H}$ such that h and g are of the form

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}, \quad g(z)=(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| z^{k}, \quad\left|b_{1}\right|<1 . \tag{1.5}
\end{equation*}
$$

Interestingly, we obtain the following known subclasses of S_{H} studied earlier by various researchers by specializing the parameters.
(i) Yalcin [20] has studied the subclasses

$$
S_{H}^{0}\left(m, n, 1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv S_{H}(m, n ; \alpha)
$$

and
$\mathcal{T} S_{H}^{0}\left(m, n, 1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{T} S_{H}(m, n ; \alpha)$;
(ii) Jahangiri et al [11] has studied the subclasses
$S_{H}^{0}\left(n+1, n, 1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv S_{H}(n ; \alpha)$
and
$\mathcal{T} S_{H}^{0}\left(n+1, n, 1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{T} S_{H}(n ; \alpha) ;$
(iii) Jahangiri [10] has studied the subclasses
$S_{H}^{0}\left(1,0,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv S_{H}^{*}(\alpha)$
and
$\mathcal{T} S_{H}^{0}\left(1,0,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{T} S_{H}^{*}(\alpha) ;$
(iv) Jahangiri [10] has studied the subclasses
$S_{H}^{0}\left(2,1,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{K}_{H}(\alpha)$
and
$\mathcal{T} S_{H}^{0}\left(2,1,1, \frac{z}{1-z}, \frac{z}{1-z} ; \alpha\right) \equiv \mathcal{K}_{H}(\alpha) ;$
(v) Frasin [9] has studied the subclasses
$S_{H}^{1}(0,0,1, \phi, \psi ; \alpha) \equiv S_{H}(\phi, \psi ; \alpha)$
and
$\mathcal{T} S_{H}^{1}(0,0,1, \phi, \psi ; \alpha) \equiv \mathcal{T} S_{H}(\phi, \psi ; \alpha) ;$
(vi) Silverman [18], Silverman and Silvia [19] (also see [3]) has studied the subclasses $S_{H}^{0}\left(2,1,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{K}_{H}$,
$\mathcal{T} S_{H}^{0}\left(2,1,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{T} \mathcal{K}_{H}$, $S_{H}^{0}\left(1,0,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv S_{H}^{*}$

$$
\begin{aligned}
& \text { and } \\
& \mathcal{T} S_{H}^{0}\left(1,0,1, \frac{z}{1-z}, \frac{z}{1-z} ; 0\right) \equiv \mathcal{T} S_{H}^{*}
\end{aligned}
$$

(vii) Sharma et al [17] has studied the subclasses

$$
\begin{aligned}
& S_{H}^{i}(m, n, 1, \phi, \psi ; \alpha) \equiv S_{H}^{i}(m, n, \phi, \psi ; \alpha) \\
& \text { and } \\
& \mathcal{T} S_{H}^{i}(m, n, 1, \phi, \psi ; \alpha) \equiv \mathcal{T} S_{H}^{i}(m, n, \phi, \psi ; \alpha) .
\end{aligned}
$$

In the present paper, we prove some sharp results including, coefficient inequality, bounds, extreme points, convolution and convex combination for functions in $\mathcal{T} S_{H}^{i}(m, n, \phi, \psi, \gamma ; \alpha)$ under certain conditions on the coefficients of ϕ and ψ.

2. Main results

We begin with a sufficient coefficient condition for functions to be in class $S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.

Theorem 2.1. Let the function $f=h+\bar{g}$, where h and g are of the form (1.1), satisfies

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \tag{2.1}\\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \leq 1,
\end{align*}
$$

where, $i \in\{0,1\}, m \in \mathbb{N}_{0}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \gamma \geq 1, \lambda_{k} \geq 1, \mu_{k} \geq 1$, $k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1$. Then f is sense-preserving, harmonic univalent in \mathbb{U} and $f \in S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.
Proof. Under the given hypothesis, we note that for

$$
\begin{align*}
& k \geq 1, \quad k \leq \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha} \\
& k \leq \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha} \tag{2.2}
\end{align*}
$$

Hence, for $f=h+\bar{g}$, where h and g are of the form (1.1), we get that

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{k=2}^{\infty} k\left|a_{k}\right| r^{k-1}>1-\sum_{k=2}^{\infty} k\left|a_{k}\right| \\
& >1-\sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \\
& \geq \sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \\
& \geq \sum_{k=1}^{\infty} k\left|b_{k}\right|>\sum_{k=1}^{\infty} k\left|b_{k}\right| r^{k-1} \geq\left|g^{\prime}(z)\right|
\end{aligned}
$$

which proves that f is sense preserving in \mathbb{U}. To show that f is univalent in \mathbb{U}, suppose $z_{1}, z_{2} \in \mathbb{U}$ such that $z_{1} \neq z_{2}$, then

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & =1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
& =1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}{\left(z_{2}-z_{1}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}\right| \\
& >1-\left|\frac{\sum_{k=1}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k \mid a_{k \mid}}\right| \\
& \geq 1-\frac{\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right|} \\
& \geq 0 .
\end{aligned}
$$

Now, to show that $f \in S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, we use the fact that $\mathfrak{R e}\{\omega\} \geq \alpha$, if and only if $|1-\alpha+\omega| \geq|1+\alpha-\omega|$.

Hence, it suffices to show that

$$
\begin{equation*}
Q(z)=|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{2.3}
\end{equation*}
$$

where, $A(z)=D_{\gamma}^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D_{\gamma}^{m} g(z) * \psi(z)}$ and $B(z)=D_{\gamma}^{n} h(z)+(-1)^{n} \overline{D_{\gamma}^{n} g(z)}$.

Substituting the corresponding series expansions in the expressions of $A(z)$ and $B(z)$, we obtain from (2.3), that

$$
\begin{aligned}
Q(z)= & \left|\begin{array}{l}
(2-\alpha) z+\sum_{k=2}^{\infty}\left\{\begin{array}{l}
\lambda_{k}[1+(k-1) \gamma]^{m} \\
+(1-\alpha)[1+(k-1) \gamma]^{n}
\end{array}\right\} a_{k} z^{k} \\
+(-1)^{m+i} \sum_{k=1}^{\infty}\left\{\begin{array}{l}
\mu_{k}[1+(k-1) \gamma]^{m} \\
+(-1)^{m+i-n}(1-\alpha)[1+(k-1) \gamma]^{n}
\end{array}\right\} \overline{b_{k} z^{k}}
\end{array}\right| \\
& -\left|\begin{array}{l}
-\alpha z+\sum_{k=2}^{\infty}\left\{\begin{array}{c}
\lambda_{k}[1+(k-1) \gamma]^{m} \\
-(1+\alpha)[1+(k-1) \gamma]^{n}
\end{array}\right\} a_{k} z^{k} \\
+(-1)^{m+i} \sum_{k=1}^{\infty}\left\{\begin{array}{l}
\mu_{k}[1+(k-1) \gamma]^{m} \\
-(-1)^{m+i-n}(1+\alpha)[1+(k-1) \gamma]^{n}
\end{array}\right\} \overline{b_{k} z^{k}}
\end{array}\right| \\
& >2\left\{\begin{array}{l}
(1-\alpha)-\sum_{k=2}^{\infty} \lambda_{k}\left[\begin{array}{l}
(1+(k-1) \gamma)^{m} \\
-\alpha(1+(k-1) \gamma)^{n}
\end{array}\right]\left|a_{k}\right| \\
-\sum_{k=1}^{\infty} \mu_{k}\left[\begin{array}{l}
(1+(k-1) \gamma)^{m} \\
-(-1)^{m+i-n} \alpha(1+(k-1) \gamma)^{n}
\end{array}\right]\left|b_{k}\right|
\end{array}\right\}
\end{aligned}
$$

$$
\geq 0
$$

Hence inequality (2.3) satisfied. This proves the Theorem 2.1.
Sharpness of the coefficient inequality (2.1) can be seen by the function

$$
\begin{aligned}
f(z)= & z+\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k}(1+(k-1) \gamma)^{m}-\alpha(1+(k-1) \gamma)^{n}} x_{k} z^{k} \\
& +\sum_{k=1}^{\infty} \frac{1-\alpha}{\mu_{k}(1+(k-1) \gamma)^{m}-(-1)^{m+i-n} \alpha(1+(k-1) \gamma)^{n}} \overline{y_{k} z^{k}}
\end{aligned}
$$

where, $i \in\{0,1\}, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \lambda_{k} \geq 1, \mu_{k} \geq 1, k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1, \sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$.

Next, we have show that the above sufficient coefficient condition is also necessary for functions in the class $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.

Theorem 2.2. Let the function $f=h+\bar{g}$, be such that h and g are given by (1.5). Then, $f \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ if and only if

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \tag{2.4}\\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \leq 2
\end{align*}
$$

where, $a_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \gamma \geq 1, \lambda_{k} \geq 1, \mu_{k} \geq 1, k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1$.

Proof. The if part, follows from Theorem 2.1. To prove the "only if" part, let $f \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, then from (1.4), we have

$$
\mathfrak{R e}\left\{\frac{D_{\gamma}^{m} h(z) * \phi(z)+(-1)^{m+i} \overline{D_{\gamma}^{m} g(z) * \psi(z)}}{D_{\gamma}^{n} h(z)+(-1)^{n} \overline{D_{\gamma}^{n} g(z)}}-\alpha\right\}>0, \quad z \in \mathbb{U}
$$

which is equivalent to

$$
\mathfrak{R e}\left\{\frac{\left.\begin{array}{c}
(1-\alpha) z-\sum_{k=2}^{\infty}\left\{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}\right\}\left|a_{k}\right| z^{k} \\
+(-1)^{2 m+2 i-1} \sum_{k=1}^{\infty}\left\{\begin{array}{c}
\mu_{k}[1+(k-1) \gamma]^{m} \\
-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}
\end{array}\right\}\left|b_{k}\right| \bar{z}^{k} \\
z-\sum_{k=2}^{\infty}[1+(k-1) \gamma]^{n}\left|a_{k}\right| z^{k}+(-1)^{m+i-1}[1+(k-1) \gamma]^{n}\left|b_{k}\right| z^{k}
\end{array}\right\}>0 . ~}{}\right\}
$$

If we choose z to be real and $z \rightarrow 1$, we get

$$
\left\{\begin{array}{l}
\binom{(1-\alpha)-\sum_{k=2}^{\infty}\left\{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}\right\}\left|a_{k}\right|}{1-\sum_{k=2}^{\infty}[1+(k-1) \gamma]^{n}\left|a_{k}\right|+(-1)^{m+i-1}[1+(k-1) \gamma]^{n}\left|b_{k}\right|} \\
-\left(\frac{\sum_{k=1}^{\infty}\left\{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}\right\}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty}[1+(k-1) \gamma]^{n}\left|a_{k}\right|+(-1)^{m+i-1}[1+(k-1) \gamma]^{n}\left|b_{k}\right|}\right)
\end{array}\right\} \geq 0
$$

or, equivalently,

$$
\left\{\begin{array}{l}
\sum_{k=2}^{\infty}\left\{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}\right\}\left|a_{k}\right| \\
+\sum_{k=1}^{\infty}\left\{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}\right\}\left|b_{k}\right|
\end{array}\right\} \leq 1-\alpha
$$

which is the required condition (2.4). This completes the proof.

For the classes $\mathcal{T} S_{H}(m, n, \gamma ; \alpha)$ and $\mathcal{T} S_{H}(\phi, \psi ; \alpha)$ mentioned in the main results, Theorem 2.2 yields the following results, which include the results for other known classes discussed in main results.

Corollary 2.3. ([16]) Let the function $f=h+\bar{g}$, be such that h and g are given by (1.5). Then, $f \in \mathcal{T} S_{H}(m, n, \gamma ; \alpha)$ if and only if

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{[1+(k-1) \gamma]^{m}-[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \\
& +\sum_{k=1}^{\infty} \frac{[1+(k-1) \gamma]^{m}-(-1)^{m-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \leq 2,
\end{aligned}
$$

where $a_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1$.
Corollary 2.4. ([17]) Let the function $f=h+\bar{g}$, be such that h and g are given by (1.5). Then, $f \in \mathcal{T} S_{H}^{i}(m, n, \phi, \psi ; \alpha)$ if and only if

$$
\sum_{k=1}^{\infty} \frac{\lambda_{k} k^{m}-\alpha k^{n}}{1-\alpha}\left|a_{k}\right|+\frac{\mu_{k} k^{m}-(-1)^{m+i-n} \alpha k^{n}}{1-\alpha}\left|b_{k}\right| \leq 2
$$

where, $a_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \lambda_{k} \geq 1, \mu_{k} \geq 1, k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1$.

Corollary 2.5. Let the function $f=h+\bar{g}$, be such that h and g are given by (1.5). Then, $f \in \mathcal{T} S_{H}(\phi, \psi ; \alpha)$ if and only if

$$
\sum_{k=1}^{\infty}\left\{\frac{\lambda_{k}-\alpha}{1-\alpha}\left|a_{k}\right|+\frac{\mu_{k}+\alpha}{1-\alpha}\left|b_{k}\right|\right\} \leq 2
$$

where $a_{1}=1, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1,0 \leq \alpha<1$.

3. Bounds

Our next theorem provides the bounds for the functions in $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ which is followed by a covering result for this class.

Theorem 3.1. Let $f=h+\bar{g}$, with h and g are of the form (1.5) belongs to the class $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ for functions ϕ and ψ with non-decreasing sequences $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{k}\right\}$ satisfying $\lambda_{2} \geq \alpha, \mu_{1} \geq(2-\alpha), \mu_{k} \geq \lambda_{2}, k \geq 2$, $\gamma \geq 1$, then

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left[1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right] \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}},|z|=r<1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left[1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right] \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}},|z|=r<1 . \tag{3.2}
\end{equation*}
$$

Proof. We only prove the result for upper bound. The result for the lower bound can similarly be obtained.

Let $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, then on taking the absolute value of function f, we get for $|z|=r<1$,

$$
\begin{align*}
|f(z)| \leq & \left(1+\left|b_{1}\right|\right) r+\sum_{k=2}^{\infty}\left[\left|a_{k}\right|+\left|b_{k}\right|\right] r^{k} \leq\left(1+\left|b_{1}\right|\right) r+r^{2} \sum_{k=2}^{\infty}\left[\left|a_{k}\right|+\left|b_{k}\right|\right] \\
& \leq\left(1+\left|b_{1}\right|\right) r+\left[\frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}}\right] \\
& \times\left\{\begin{array}{l}
\sum_{k=2}^{\infty} \frac{\left(\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}\right)}{1-\alpha}\left|a_{k}\right| \\
+\sum_{k=2}^{\infty} \frac{\left(\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}\right)}{1-\alpha}\left|b_{k}\right|
\end{array}\right\} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\left\{1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) r^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}}, \quad \text { by } \quad(2.4) . \tag{2.4}
\end{align*}
$$

The bounds (3.1) and (3.2) are sharp for the function given by

$$
f(z)=z+\left|b_{1}\right| \bar{z}+\left\{1-\frac{1-(-1)^{m+i-n} \alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) \bar{z}^{2}}{2^{m} \lambda_{2}-\alpha 2^{n}},
$$

for $\left|b_{1}\right|<\frac{(1-\alpha)}{\left(1-(-1)^{m+i-n} \alpha\right)}$. A covering result follows from (3.2). The proof of the theorem is complete.

Corollary 3.2. Let $f \in S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ and for functions ϕ and ψ with non-decreasing sequences $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{k}\right\}$ satisfying $\lambda_{2} \geq \alpha, \mu_{1} \geq(2-\alpha), \mu_{k} \geq$ $\lambda_{2}, k \geq 2, \gamma \geq 1$. Then

$$
\left\{\omega:|\omega|<\left[1-\frac{(1-\alpha)}{2^{m} \lambda_{2}-\alpha 2^{n}}\right]+\left[\frac{1-(-1)^{m+i-n} \alpha}{2^{m} \lambda_{2}-\alpha 2^{n}}-1\right]\left|b_{1}\right|\right\} \subset f(\mathbb{U}) .
$$

Further, for the classes $\mathcal{T} S_{H}(m, n, \gamma ; \alpha)$ and $\left.\mathcal{T} S_{H} \phi, \psi ; \alpha\right)$, Theorem 3.1 yields following results which include the results for other known classes discussed in main results.

Corollary 3.3. ([16]) Let $f=h+\bar{g}$ with h and g are of the form (1.5) belongs to the class $\mathcal{T} S_{H}(m, n, \gamma ; \alpha), \gamma \geq 1,0 \leq \alpha<1$ with non-decreasing sequences $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{k}\right\}$ satisfying $\lambda_{2} \geq \alpha, \mu_{1} \geq(2-\alpha), \mu_{k} \geq \lambda_{2}, k \geq 2, \gamma \geq 1$. Then

$$
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left\{1-\frac{1-(-1)^{m-n} \alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) r^{2}}{2^{m}-\alpha 2^{n}}, \quad|z|=r<1
$$

and

$$
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left\{1-\frac{1-(-1)^{m-n} \alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) r^{2}}{2^{m}-\alpha 2^{n}}, \quad|z|=r<1 .
$$

Further,

$$
\left\{\omega:|\omega|<\left[1-\frac{(1-\alpha)}{2^{m}-\alpha 2^{n}}\right]+\left[\frac{1-(-1)^{m+i-n} \alpha}{2^{m}-\alpha 2^{n}}-1\right]\left|b_{1}\right|\right\} \subset f(\mathbb{U})
$$

Corollary 3.4. Let $f=h+\bar{g}$ with h and g are of the form (1.5) belongs to the class $\mathcal{T} S_{H}(\phi, \psi ; \alpha)$, for function ϕ and ψ with non-decreasing sequences $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{k}\right\}$ satisfying $\lambda_{2} \geq \alpha, \mu_{1} \geq(2-\alpha), \mu_{k} \geq \lambda_{2}, k \geq 2, \gamma \geq 1$. Then

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left\{1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) r^{2}}{\lambda_{2}-\alpha}, \quad|z|=r<1 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left\{1-\frac{1+\alpha}{1-\alpha}\left|b_{1}\right|\right\} \frac{(1-\alpha) r^{2}}{\lambda_{2}-\alpha}, \quad|z|=r<1 \tag{3.4}
\end{equation*}
$$

Further,

$$
\left\{\omega:|\omega|<\frac{1}{\lambda_{2}-\alpha}\left[\lambda_{2}-1+\left(1-\lambda_{2}+2 \alpha\right)\right]\left|b_{1}\right|\right\} \subset f(\mathbb{U}) .
$$

4. Extreme points

In this section we determine the extreme points of $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.
Theorem 4.1. Let

$$
\begin{gathered}
h_{1}(z)=z \\
h_{k}(z)=z-\frac{1-\alpha}{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}} z^{k}(k \geq 2)
\end{gathered}
$$

and

$$
g_{k}(z)=z+\frac{(-1)^{m+i-1}(1-\alpha)}{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}} \bar{z}^{k}(k \geq 1) .
$$

Then $f \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ if and only if it can be expressed as

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left[x_{k} h_{k}(z)+y_{k} g_{k}(z)\right], \tag{4.1}
\end{equation*}
$$

where, $x_{k} \geq 0, y_{k} \geq 0$ and $\sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right)=1$.
In particular, the extreme points of $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ are $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$.
Proof. Suppose that

$$
f(z)=\sum_{k=1}^{\infty}\left[x_{k} h_{k}(z)+y_{k} g_{k}(z)\right] .
$$

Then,

$$
\begin{aligned}
f(z)= & \sum_{k=1}^{\infty}\left[x_{k}+y_{k}\right] z-\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}} x_{k} z^{k} \\
& +(-1)^{m+i-1} \sum_{k=1}^{\infty} \frac{1-\alpha}{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}} y_{k} \bar{z}^{k} \\
= & z-\sum_{k=2}^{\infty} \frac{1-\alpha}{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n} x_{k} z^{k}} \\
& +(-1)^{m+i-1} \sum_{k=1}^{\infty} \frac{1-\alpha}{\left.\left.\mu_{k}[1+(k-1) \gamma)\right]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma)\right]^{n}} y_{k} \bar{z}^{k} .
\end{aligned}
$$

We show that the function $f(z) \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.
Since,

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left\{\begin{array}{l}
\left(\frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\right) \\
\times\left(\frac{1-\alpha}{\lambda_{k}(1+(k-1) \gamma)^{m}-\alpha(1+(k-1) \gamma)^{n}}\right)
\end{array}\right\} x_{k} \\
& +\sum_{k=1}^{\infty}\left\{\begin{array}{l}
\left(\frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\right) \\
\times\left(\frac{1-\alpha}{\mu_{k}(1+(k-1) \gamma)^{m}-(-1)^{m+i-n} \alpha(1+(k-1) \gamma)^{n}}\right)
\end{array}\right\} y_{k} \\
& =\sum_{k=2}^{\infty} x_{k}+\sum_{k=1}^{\infty} y_{k} \\
& =1-x_{1} \\
& \leq 1 .
\end{aligned}
$$

Thus $f(z) \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$.
Conversely, If $f \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, then

$$
\left|a_{k}\right| \leq \frac{1-\alpha}{\lambda_{k}(1+(k-1) \gamma)^{m}-\alpha(1+(k-1) \gamma)^{n}}, \quad k \geq 2
$$

and

$$
\left|b_{k}\right| \leq \frac{1-\alpha}{\mu_{k}(1+(k-1) \gamma)^{m}-(-1)^{m+i-n} \alpha(1+(k-1) \gamma)^{n}}, \quad k \geq 1 .
$$

Setting

$$
x_{k}=\frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right|, \quad k \geq 2
$$

and

$$
y_{k}=\frac{1-\alpha}{\mu_{k}(1+(k-1) \gamma)^{m}-(-1)^{m+i-n} \alpha(1+(k-1) \gamma)^{n}}\left|b_{k}\right|, \quad k \geq 1 .
$$

Then, by Theorem 2.2,

$$
\sum_{k=2}^{\infty} x_{k}+\sum_{k=1}^{\infty} y_{k} \leq 1
$$

We define

$$
x_{1}=1-\sum_{k=2}^{\infty} x_{k}-\sum_{k=1}^{\infty} y_{k} \geq 0
$$

Consequently, we can see that $f(z)$ can be expressed in the form (4.1). This completes the proof.

5. Convolution and convex combination

In this section, we show that the class $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ is invariant under convolution and convex combination of harmonic functions of the form

$$
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| \bar{z}^{k}
$$

and

$$
F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|B_{k}\right| \bar{z}^{k} .
$$

We define the convolution

$$
(f * F)(z)=f(z) * F(z)=z-\sum_{k=2}^{\infty}\left|a_{k} A_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k} B_{k}\right| \bar{z}^{k} .
$$

Theorem 5.1. If $f \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ and $F \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ then $f * F \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$, where $a_{1}=A_{1}=1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq$ $n, 0 \leq \alpha<1, \gamma \geq 1, \lambda_{k} \geq 1, \mu_{k} \geq 1, k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq$ $k, k \geq 1$.
Proof. Let

$$
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{k}\right| \bar{z}^{k}
$$

and

$$
F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|B_{k}\right| \bar{z}^{k}
$$

be in $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$. Then by Theorem 2.2, we have

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \tag{5.1}\\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \leq 1
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|A_{k}\right| \tag{5.2}\\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|B_{k}\right| \leq 1 .
\end{align*}
$$

From (5.2), we conclude that $\left|A_{k}\right| \leq 1, K=2,3, \ldots$ and $\left|B_{k}\right| \leq 1, K=1,2, \ldots$. So, for $f * F$, we may write

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k} A_{k}\right| \\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k} B_{k}\right| \\
& \leq \sum_{k=2}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{k}\right| \\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{k}\right| \leq 1 .
\end{aligned}
$$

Thus $f * F \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$. This completes the proof.
In the following theorem, we prove that $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ is closed under convex combination.

Theorem 5.2. The class $\mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ is closed under convex combination, where $m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n, 0 \leq \alpha<1, \gamma \geq 1, \lambda_{k} \geq 1, \mu_{k} \geq 1, k \geq 1$. In case $m=n=0, \lambda_{k} \geq k, \mu_{k} \geq k, k \geq 1$.

Proof. For $j=1,2, \ldots$, suppose that $f_{j} \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$ where $f_{j}(z)$ is given by

$$
f_{j}(z)=z-\sum_{k=2}^{\infty}\left|a_{j, k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty}\left|b_{j, k}\right| \bar{z}^{k}
$$

Then, by Theorem 2.2, we have

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{j, k}\right| \tag{5.3}\\
& \quad+\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{j, k}\right| \leq 2
\end{align*}
$$

For $\sum_{j=1}^{\infty} t_{j}=1,0 \leq t_{j} \leq 1$, the convex combination of $f_{j}(z)$ may be written as

$$
\sum_{j=1}^{\infty} t_{j} f_{j}(z)=z-\sum_{k=2}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|a_{j, k}\right| z^{k}+(-1)^{m+i-1} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|b_{j, k}\right| \bar{z}^{k}
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{\infty} & \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha} \sum_{1=1}^{\infty} t_{j}\left|a_{j, k}\right| \\
& +\sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha} \sum_{j=1}^{\infty} t_{j}\left|b_{j, k}\right| \\
= & \sum_{j=1}^{\infty} t_{i} \sum_{k=1}^{\infty} \frac{\lambda_{k}[1+(k-1) \gamma]^{m}-\alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|a_{j, k}\right| \\
& +\sum_{j=1}^{\infty} t_{i} \sum_{k=1}^{\infty} \frac{\mu_{k}[1+(k-1) \gamma]^{m}-(-1)^{m+i-n} \alpha[1+(k-1) \gamma]^{n}}{1-\alpha}\left|b_{j, k}\right| \\
\leq & 2 \sum_{j=1}^{\infty} t_{i} \\
= & 2 .
\end{aligned}
$$

and so, by Theorem 2.2, we have $\sum_{j=1}^{\infty} t_{i} f_{i}(z) \in \mathcal{T} S_{H}^{i}(m, n, \gamma, \phi, \psi ; \alpha)$. This completes the proof.

Acknowledgements: The authors are thankful to the referees for their valuable comments and suggestions.

References

[1] O.P. Ahuja, Planar harmonic univalent and related mappings, J. Ineq. Pure Appl. Math., 6(4) (2005), Art. 122, 1-18.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Ind. J. Math. Sci., 27 (2004), 1429-1436.
[3] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae CurieSklodowska, Sect., A44 (1990), 1-7.
[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math., 9(3) (1984),3-25.
[5] K.K. Dixit, A.L. Pathak, S. Porwal and R. Agrawal, On a new subclass of harmonic univalent functions defined by convolution and integral convolution, Int. J. Pure Appl. Math., 69(3) (2011), 255-264.
[6] K.K. Dixit, A.L. Pathak, S. Porwal and S.B. Joshi, A family of harmonic univalent functions associated with convolution operator, Mathematica (Cluj), Romania, 53(76)(1) (2011), 35-44.
[7] K.K. Dixit and Saurabh Porwal, Some properties of harmonic functions defined by convolution, Kyungpook Math. J., 49 (2009), 751-761.
[8] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, 2004.
[9] B.A. Frasin, Comprehensive family of harmonic univalent functions, SUT J. Math., 42 (1) (2006), 145-155.
[10] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477.
[11] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77-82.
[12] O.P. Juneja, T.R. Reddy and M.L. Mogra, A convolution approach for analytic functions with negative coefficients, Soochow J. Math., 11 (1985), 69-81.
[13] A.N. Metkari, N.D. Sangle and S.P. Hande, A new class of univalent harmonic meromorphic functions of complex order, Our Heritage., 68(30) (2020), 5506-5518.
[14] S. Ponnusamy and A. Rasila, Planar harmonic mappings, RMS Mathematics Newsletter, $\mathbf{1 7}(2)$ (2007), 40-57.
[15] S. Ponnusamy and A. Rasila, Planar harmonic and quasiconformal mappings, RMS Mathematics Newsletter, 17(3) (2007), 85-101.
[16] P. Sharma, A Goodman-Rnning type class of harmonic univalent functions involving convolutional operators, Int. J. Math. Arch., 3(3) (2012), 1211-1221.
[17] P. Sharma, S. Porwal and A. Kanaujia, A generalized class of harmonic univalent functions associated with salagean operators involving convolutions, Acta Universitatis Apulensis, 39 (2014), 99-111.
[18] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289.
[19] H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28 (1999), 275-284.
[20] S. Yalcin, A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., 18 (2005), 191-198.

[^0]: ${ }^{0}$ Received August 14, 2020. Revised November 4, 2020. Accepted April 10, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C45, 30C50.
 ${ }^{0}$ Keywords: Harmonic functions, univalent functions, convolution, Al-Oboudi operator.
 ${ }^{0}$ Corresponding author: A. N. Metkari(anand.metkari@gmail.com).

