On Generalized Integral Operator Based on Salagean Operator

Huda Abdullah Al-Kharsani
address Department of Mathematics, Faculty of Science, Girls College, P.O. Box 838, Damma, Saudi Arabia
e-mail : hakh73@hotmail.com
AbStract. Let $A(p)$ be the class of functions $f: z^{p}+\sum_{j=1}^{\infty} a_{j} z^{p+j}$ analytic in the open unit disc E. Let, for any integer $n>-p, f_{n+p-1}(z)=z^{p}+\sum_{j=1}^{\infty}(p+j)^{n+p-1} z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution $*$ as $f_{n+p-1} * f_{n+p-1}^{-1}=\frac{z^{p}}{(1-z)^{n+p}}$. A function p, analytic in E with $p(0)=1$, is in the class $P_{k}(\rho)$ if $\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\rho}{p-\rho}\right| d \theta \leq k \pi$, where $z=r e^{i \theta}, \quad k \geq 2$ and $0 \leq \rho \leq p$. We use the class $P_{k}(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)=f_{n+p-1}^{-1} * f$ for $f(z)$ belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

1. Introduction

Let $A(p)$ denote the class of functions f given by

$$
f(z)=z^{p}+\sum_{j=1}^{\infty} a_{j} z^{p+j}, \quad p \in N=\{1,2, \cdots\}
$$

which are analytic in the unit disc $E=\{z:|z|<1\}$. The Hadamard product or convolution $(f * g)$ of two functions with

$$
f(z)=z^{p}+\sum_{j=1}^{\infty} a_{j, 1} z^{p+j} \text { and } g(z)=z^{p}+\sum_{j=1}^{\infty} a_{j, 2} z^{p+j}
$$

is given by

$$
(f * g)(z)=z^{p}+\sum_{j=1}^{\infty} a_{j, 1} a_{j, 2} z^{p+j}
$$

Received April 3, 2006.
2000 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: convolution, integral operator, functions with positive real part, convex functions.

Denote by $D^{n}: A(p) \rightarrow A(p)$ the Salagean operator defined as follows [6].

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =z f^{\prime}(z) \\
D^{n} f(z) & =D\left(D^{n-1} f(z)\right)
\end{aligned}
$$

Several classes of analytic functions, defined by using this operator, have been studied by many authors [1],[2].

In the present paper, we introduce integral operator based on Salagean operator as follows.

Let $f_{n+p-1}(z)=z^{p}+\sum_{j=1}^{\infty}(p+j)^{n+p-1} z^{p+j}$. For any integer n greater than $-p$, let $f_{n+p-1}^{(-1)}(z)$ be defined such that

$$
\begin{equation*}
f_{n+p-1}(z) * f_{n+p-1}^{(-1)}(z)=\frac{z^{p}}{(1-z)^{p+1}} \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{align*}
L_{n+p-1} f(z) & =f_{n+p-1}^{-1}(z) * f(z) \tag{1.2}\\
& =\left[z^{p}+\sum_{j=1}^{\infty}(p+j)^{n+p-1} z^{p+j}\right]^{-1} * f(z) .
\end{align*}
$$

From (1.1) and (1.2) and a well known identity for the Salagean derivative, it follows that

$$
\begin{equation*}
z\left(L_{n+p} f(z)\right)^{\prime}=L_{n+p-1} f(z) \tag{1.3}
\end{equation*}
$$

Let $P_{k}(\rho)$ be the class of functions $p(z)$ analytic in E satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\rho}{p-\rho}\right| d \theta \leq k \pi \tag{1.4}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \rho<p$. For $p=1$, this class was introduced in [3] and for $\rho=0$. For $\rho=0, k=2$, we have the well known class P of functions with positive real part and the class $k=2$ gives us the class $P(\rho)$ of functions with positive real part greater than ρ. Also from (1.4), we note that $p \in P_{k}(\rho)$ if and only if there exist $p_{1}, p_{2} \in P_{k}(\rho)$ such that

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) .
$$

It is known [3] that the class $P_{k}(\rho)$ is a convex set.

Definition 1.1. Let $f \in A(p)$. Then $f \in R_{k}(\alpha, p, n, \rho)$ if and only if

$$
\left[(1-\alpha) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha \frac{L_{n+p} f(z)}{z^{p}}\right] \in P_{k}(\rho)
$$

for $\alpha \geq 0, \quad n>-p, \quad 0 \leq \rho<p, \quad k \geq 2$ and $z \in E$.

2. Preliminary results

Lemma 2.1. Let $p(z)=1+b_{1} z+b_{2} z^{2}+\cdots \in P(\rho)$. Then

$$
\operatorname{Re} p(z) \geq 2 \rho-1+\frac{2(1-\rho)}{1+|z|}
$$

This result is well known.
Lemma 2.2 ([5]). If $p(z)$ is analytic in E with $p(0)=1$ and if λ_{1} is a complex number satisfying Re $\lambda_{1} \geq 0, \quad\left(\lambda_{1} \neq 0\right)$, then $\operatorname{Re}\left\{p(z)+\lambda_{1} z p^{\prime}(z)\right\}>\beta \quad(0 \leq \beta<p)$ implies

$$
\operatorname{Re} p(z)>\beta+(1-\beta)\left(2 \gamma_{1}-1\right)
$$

where γ_{1} is given by

$$
\gamma_{1}=\int_{0}^{1}\left(1+t^{\operatorname{Re} \lambda_{1}}\right)^{-1} d t
$$

Lemma 2.3 ([7]). If $p(z)$ is analytic in $E, p(0)=1$ and Re $p(z)>\frac{1}{2}, \quad z \in E$, then for any function F analytic in E, the function $p * F$ takes values in the convex hull of the image E under F.

3. Main results

Theorem 3.1. Let $f \in R_{k}\left(\alpha, p, n, \rho_{1}\right)$ and $g \in R_{k}\left(\alpha, p, n, \rho_{2}\right)$, and let $F=f * g$. Then $F \in R_{k}\left(\alpha, p, n, \rho_{3}\right)$ where

$$
\begin{equation*}
\rho_{3}=1-2\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \tag{3.1}
\end{equation*}
$$

The result is sharp.
Proof. Since $f \in R_{k}\left(\alpha, p, n, \rho_{1}\right)$, it follows that

$$
H(z)=\left[(1-\alpha) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha \frac{L_{n+p} f(z)}{z^{p}}\right] \in P_{k}\left(\rho_{1}\right)
$$

and so using (1.3), we have

$$
\begin{equation*}
L_{n+p} f(z)=\frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_{0}^{z} t^{\frac{\alpha}{1-\alpha}+p-1} H(t) d t . \tag{3.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
L_{n+p} g(z)=\frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_{0}^{z} t^{\frac{\alpha}{1-\alpha}+p-1} H^{*}(t) d t \tag{3.3}
\end{equation*}
$$

where $H^{*} \in P_{k}\left(\rho_{2}\right)$. Using (3.1) and (3.2), we have

$$
\begin{equation*}
L_{n+p} F(z)=\frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_{0}^{z} t^{\frac{\alpha}{1-\alpha}+p-1} Q(t) d t \tag{3.4}
\end{equation*}
$$

where $Q(z)=\left(\frac{k}{4}+\frac{1}{2}\right) q_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) q_{2}(z)$. Then

$$
\begin{equation*}
L_{n+p} F(z)=\frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_{0}^{z} t^{\frac{\alpha}{1-\alpha}+p-1}\left(H * H^{*}\right)(t) d t . \tag{3.5}
\end{equation*}
$$

Now

$$
\begin{align*}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{3.6}\\
H^{*}(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}^{*}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}^{*}(z)
\end{align*}
$$

where $h_{i} \in P_{k}\left(\rho_{1}\right)$ and $h_{i}^{*} \in P_{k}\left(\rho_{2}\right), i=1,2$. Since

$$
p_{i}^{*}(z)=\frac{h_{i}^{*}(z)-\rho_{2}}{2\left(1-\rho_{2}\right)}+\frac{1}{2} \in P\left(\frac{1}{2}\right), \quad i=1,2
$$

we obtain $\left(h_{i} * p_{i}^{*}\right)(z) \in P\left(\rho_{1}\right)$, by using the Herglotz formula. Thus

$$
\begin{equation*}
h_{i} * h_{i}^{*}(z) \in P\left(\rho_{3}\right) \tag{3.7}
\end{equation*}
$$

with

$$
\rho_{3}=1-2\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) .
$$

Using (3.4), (3.5), (3.6), (3.1) and Lemma 2.1, we have

$$
\begin{aligned}
\operatorname{Re} q_{i}(z) & \left.=\frac{1}{1-\alpha} \int_{0}^{1} u^{\frac{\alpha}{1-\alpha}+p-1} \operatorname{Re}\left(h_{i} * h_{i}^{*}\right)(u z)\right\} d u \\
& \geq \frac{1}{1-\alpha} \int_{0}^{1} u^{\frac{\alpha}{1-\alpha}+p-1}\left(2 \rho_{3}-1+\frac{2\left(1-\rho_{3}\right)}{1+u|z|}\right) d u \\
& >\frac{1}{1-\alpha} \int_{0}^{1} u^{\frac{\alpha}{1-\alpha}+p-1}\left(2 \rho_{3}-1+\frac{2\left(1-\rho_{3}\right)}{1+u}\right) d u \\
& =\delta-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left[\delta-\frac{1}{1-\alpha} \int_{0}^{1} \frac{u^{\frac{\alpha}{1-\alpha}+p-1}}{1+u} d u\right]
\end{aligned}
$$

where $\delta=1 /(\alpha+p(1-\alpha))$.
From this, we conclude that $F \in R_{k}\left(\alpha, p, n, \rho_{3}\right)$, where ρ_{3} is given by (3.1).
We discuss the sharpness as follows. We take

$$
\begin{aligned}
H(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{1}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{1}\right) z}{1+z} \\
H^{*}(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+\left(1-2 \rho_{2}\right) z}{1-z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-\left(1-2 \rho_{2}\right) z}{1+z}
\end{aligned}
$$

Since

$$
\left(\frac{1+\left(1-2 \rho_{1}\right) z}{1-z}\right) *\left(\frac{1+\left(1-2 \rho_{2}\right) z}{1-z}\right)=1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)+\frac{4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}{1-z},
$$

it follows from (3.5) that

$$
\begin{aligned}
q_{i}(z) & =\frac{1}{1-\alpha} \int_{0}^{1} u^{\frac{\alpha}{1-\alpha}+p-1}\left\{1-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)+\frac{4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}{1-u z}\right\} d u \\
& \rightarrow \delta-4\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left\{\delta-\frac{1}{1-\alpha} \int_{0}^{1} \frac{u^{\frac{\alpha}{1-\alpha}+p-1}}{1+u} d u\right\} \quad \text { as } z \rightarrow 1
\end{aligned}
$$

This completes the proof.
We define $J_{c}: A(p) \rightarrow A(p)$ as follows.

$$
\begin{equation*}
J_{c}(f)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.8}
\end{equation*}
$$

where c is real and $c>-p$.
Theorem 3.2. Let $f \in R_{k}(\alpha, p, n, \rho)$ and $J_{c}(f)$ be given by (3.8). If

$$
\begin{equation*}
\left[(1-\alpha) \frac{L_{n+p} f(z)}{z^{p}}+\alpha \frac{L_{n+p} J_{c}(f)}{z^{p}}\right] \in P_{k}(\rho), \tag{3.9}
\end{equation*}
$$

then

$$
\left\{\frac{L_{n+p} J_{c}(f)}{z^{p}}\right\} \in P_{k}(\gamma), \quad z \in E
$$

and

$$
\begin{align*}
\gamma & =\rho+(1-\rho)(2 \sigma-1) \tag{3.10}\\
\sigma & =\int_{0}^{1}\left[1+t^{\operatorname{Re} \frac{1-\alpha}{c+p}}\right]^{-1} d t .
\end{align*}
$$

Proof. From (3.8), we have

$$
(c+p) L_{n+p} f(z)=c L_{n+p} J_{c}(f)+z\left(L_{n+p} J_{c}(f)\right)^{\prime}
$$

Let

$$
\begin{equation*}
H_{c}(z)=\left(\frac{k}{4}+\frac{1}{2}\right) s_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) s_{2}(z)=\frac{L_{n+p} J_{c}(f)}{z^{p}} . \tag{3.11}
\end{equation*}
$$

From (3.9), (3.10) and (3.11), we have

$$
\left[(1-\alpha) \frac{L_{n+p} f(z)}{z^{p}}+\alpha \frac{L_{n+p} J_{c}(f)}{z^{p}}\right]=\left[H_{c}(z)+\frac{1-\alpha}{c+p} z H_{c}^{\prime}(z)\right]
$$

and consequently

$$
\left[s_{i}(z)+\frac{1-\alpha}{c+p} z s_{i}^{\prime}(z)\right] \in P(\rho), \quad i=1,2 .
$$

Using Lemma 2.2, we have $\operatorname{Re}\left\{s_{i}(z)\right\}>\gamma$, where γ is given by (3.10). Thus

$$
H_{c}(z)=\frac{L_{n+p} J_{c}(z)}{z^{p}} \in P_{k}(\gamma)
$$

and this completes the proof.
Let

$$
\begin{equation*}
J_{0}(f(z))=J_{0}(f)=p \int_{0}^{z} \frac{f(t)}{t} d t \tag{3.12}
\end{equation*}
$$

Then

$$
L_{n+p-1} J_{0}(f)=p L_{n+p} f
$$

and we have the following.
Theorem 3.3. Let $f \in R_{k}(\alpha, p, n+1, \rho)$. Then $J_{0}(f) \in R_{k}(\alpha, p, n, \rho)$ for $z \in E$.
Theorem 3.4. Let $\phi \in C_{p}$, where C_{p} is the class of p-valent convex functions, and let $f \in R_{k}(\alpha, p, n, \rho)$. Then $\phi * f \in R_{k}(\alpha, p, n, \rho)$ for $z \in E$.
Proof. Let $G=\phi * f$. Then

$$
\begin{aligned}
(1-\alpha) \frac{L_{n+p-1} G(z)}{z^{p}} & +\alpha \frac{L_{n+p} G(z)}{z^{p}} \\
& =(1-\alpha) \frac{L_{n+p-1}(\phi * f)(z)}{z^{p}}+\alpha \frac{L_{n+p}(\phi * f)(z)}{z^{p}} \\
& =\frac{\phi(z)}{z^{p}} *\left[(1-\alpha) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha \frac{L_{n+p} f(z)}{z^{p}}\right] \\
& =\frac{\phi(z)}{z^{p}} * H(z), \quad H \in P_{k}(\rho) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\rho)\left(\frac{\phi(z)}{z^{p}} * h_{1}(z)\right)+\rho\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\rho)\left(\frac{\phi(z)}{z^{p}} * h_{2}(z)\right)+\rho\right\}, \quad h_{1}, h_{2} \in P .
\end{aligned}
$$

Since $\phi \in C_{p}, \quad \operatorname{Re} \frac{\phi(z)}{z^{p}}>\frac{1}{2}, \quad z \in E$ and so using Lemma 2.3, we conclude that $G \in R_{k}(\alpha, p, n, \rho)$.

Corollary 3.5. Let $\phi_{c}=\sum_{m=p}^{\infty} \frac{p+c}{m+c} z^{m},(c>-p)$ is in C_{p}, then $J_{c}(f)=\phi_{c} * f \in$ $R_{k}(\alpha, p, n, \rho)$.
Corollary 3.6. Let $J_{0} f$, defined by (3.12) belong to $R_{k}(\alpha, p, n, \rho)$. Then $f \in$ $R_{k}(\alpha, p, n, \rho)$ for $|z|<r_{0}=\frac{1}{2+\sqrt{3}}$.
Proof. $\quad J_{0}(f)=\psi_{0}(z) * f(z)$ where $\psi_{0}(z)=\frac{z^{p}}{(1-z)^{2}} \in C_{p}$ for $|z|<r_{0}$. Since $L_{n+p-1} J_{0}(f)=\psi_{0} * L_{n+p-1} f$, therefore we have the result using Theorem 3.4.
Theorem 3.7. For $0 \leq \alpha_{2}<\alpha_{1}, \quad R_{k}\left(\alpha_{1}, p, n, \rho\right) \subset R_{k}\left(\alpha_{2}, p, n, \rho\right), z \in E$.
Proof. For $\alpha_{2}=0$, the proof is immediate. Let $\alpha_{2}>0$ and let $f \in R_{k}\left(\alpha_{1}, p, n, \rho\right)$. Then

$$
\begin{aligned}
& \left(1-\alpha_{2}\right) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha_{2} \frac{L_{n+p} f(z)}{z^{p}} \\
= & \frac{\alpha_{2}}{\alpha_{1}}\left[\left(\frac{\alpha_{1}}{\alpha_{2}}-1\right) \frac{L_{n+p-1} f(z)}{z^{p}}+\left(1-\alpha_{1}\right) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha_{1} \frac{L_{n+p} f(z)}{z^{p}}\right] \\
= & \left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{1}(z)+\frac{\alpha_{2}}{\alpha_{1}} H_{2}(z), H_{1}, H_{2} \in P_{k}(\rho) .
\end{aligned}
$$

Since $P_{k}(\rho)$ is a convex set, we conclude that $f \in R_{k}\left(\alpha_{2}, p, n, \rho\right)$ for $z \in E$.
Theorem 3.8. Let $f \in R_{k}(0, p, n, \rho)$. Then

$$
f \in R_{k}(\alpha, p, n, \rho) \text { for }|z|<r_{\alpha}=\frac{1}{2 \alpha+\sqrt{4 \alpha^{2}-2 \alpha+1}} \quad \alpha \neq \frac{1}{2}, 0<\alpha<1
$$

Proof. Let

$$
\begin{aligned}
\psi_{\alpha}(z) & =(1-\alpha) \frac{z^{p}}{1-z}+\alpha \frac{z^{p}}{(1-z)^{2}} \\
& =z^{p}+\sum_{m=2}^{\infty}(1+(m-1) \alpha) z^{m+p-1}, \quad \phi_{\alpha} \in C_{p} \quad \text { for }|z|<r_{\alpha} \\
& =\frac{1}{2 \alpha+\sqrt{4 \alpha^{2}-2 \alpha+1}}
\end{aligned}
$$

We can write

$$
\left[(1-\alpha) \frac{L_{n+p-1} f(z)}{z^{p}}+\alpha \frac{L_{n+p} f(z)}{z^{p}}\right]=\frac{\psi_{\alpha}}{z^{p}} * f
$$

Applying Corollary 3.6, we see that $f \in R_{k}(\alpha, p, n, \rho)$ for $|z|<r_{\alpha}$.

References

[1] M. Acu, A preserving property of the generalized Bernardi integral operator, General Mathematics, 12(3)(2004), 67-71.
[2] M. K. Aouf and B. A. Al-amri, On certain fractional operators for certain subclasses of prestarlike functions defined by Salagean operator, Journal of Fractional Calculus, 22(2002), 47-56.
[3] K. Inayat Noor, On subclasses of close-to-convex functions of higher order, Internal. J. Math. Sc., 15(1992), 279-290.
[4] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[5] S. Ponnusamy, Differential subordination and Bazievic functions, preprint.
[6] G. Sălăgean, Subclasses of univalent functions, Complex Analysis, Fifth RoumanianFinish Seminar, Lecture Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
[7] R. Singh and S. Sing, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152.

