KYUNGPOOK Math. J. 48(2008), 359-366

On Generalized Integral Operator Based on Salagean Operator

HUDA ABDULLAH AL-KHARSANI

address Department of Mathematics, Faculty of Science, Girls College, P.O. Box 838, Damma, Saudi Arabia e-mail: hakh73@hotmail.com

ABSTRACT. Let A(p) be the class of functions $f: z^p + \sum_{j=1}^{\infty} a_j z^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z) = z^p + \sum_{j=1}^{\infty} (p+j)^{n+p-1} z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1} * f_{n+p-1}^{-1} = \frac{z^p}{(1-z)^{n+p}}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if $\int_0^{2\pi} \left| \frac{\operatorname{Re} p(z) - \rho}{p - \rho} \right| d\theta \le k\pi$, where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho \le p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f) = f_{n+p-1}^{-1} * f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

1. Introduction

Let A(p) denote the class of functions f given by

$$f(z) = z^p + \sum_{j=1}^{\infty} a_j z^{p+j}, \qquad p \in N = \{1, 2, \cdots\}$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$. The Hadamard product or convolution (f * g) of two functions with

$$f(z) = z^p + \sum_{j=1}^{\infty} a_{j,1} z^{p+j}$$
 and $g(z) = z^p + \sum_{j=1}^{\infty} a_{j,2} z^{p+j}$

is given by

$$(f * g)(z) = z^p + \sum_{j=1}^{\infty} a_{j,1} a_{j,2} z^{p+j}.$$

Received April 3, 2006.

2000 Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: convolution, integral operator, functions with positive real part, convex functions.

Denote by $D^n: A(p) \to A(p)$ the Salagean operator defined as follows [6].

$$D^{0}f(z) = f(z) D^{1}f(z) = zf'(z) D^{n}f(z) = D(D^{n-1}f(z)).$$

Several classes of analytic functions, defined by using this operator, have been studied by many authors [1],[2].

In the present paper, we introduce integral operator based on Salagean operator as follows.

Let $f_{n+p-1}(z) = z^p + \sum_{j=1}^{\infty} (p+j)^{n+p-1} z^{p+j}$. For any integer *n* greater than -p,

let $f_{n+p-1}^{(-1)}(z)$ be defined such that

(1.1)
$$f_{n+p-1}(z) * f_{n+p-1}^{(-1)}(z) = \frac{z^p}{(1-z)^{p+1}}$$

Then

(1.2)
$$L_{n+p-1}f(z) = f_{n+p-1}^{-1}(z) * f(z)$$
$$= \left[z^p + \sum_{j=1}^{\infty} (p+j)^{n+p-1} z^{p+j}\right]^{-1} * f(z).$$

From (1.1) and (1.2) and a well known identity for the Salagean derivative, it follows that

(1.3)
$$z(L_{n+p}f(z))' = L_{n+p-1}f(z).$$

Let $P_k(\rho)$ be the class of functions p(z) analytic in E satisfying the properties p(0) = 1 and

(1.4)
$$\int_{0}^{2\pi} \left| \frac{\operatorname{Re} p(z) - \rho}{p - \rho} \right| d\theta \le k\pi$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho < p$. For p = 1, this class was introduced in [3] and for $\rho = 0$. For $\rho = 0$, k = 2, we have the well known class P of functions with positive real part and the class k = 2 gives us the class $P(\rho)$ of functions with positive real part greater than ρ . Also from (1.4), we note that $p \in P_k(\rho)$ if and only if there exist $p_1, p_2 \in P_k(\rho)$ such that

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)p_2(z).$$

It is known [3] that the class $P_k(\rho)$ is a convex set.

Definition 1.1. Let $f \in A(p)$. Then $f \in R_k(\alpha, p, n, \rho)$ if and only if

$$\left[(1-\alpha)\frac{L_{n+p-1}f(z)}{z^p} + \alpha\frac{L_{n+p}f(z)}{z^p}\right] \in P_k(\rho)$$

 $\mbox{ for } \alpha \geq 0, \ \ n > -p, \ \ 0 \leq \rho < p, \ \ k \geq 2 \ \mbox{and} \ z \in E.$

2. Preliminary results

Lemma 2.1. Let $p(z) = 1 + b_1 z + b_2 z^2 + \cdots \in P(\rho)$. Then

Re
$$p(z) \ge 2\rho - 1 + \frac{2(1-\rho)}{1+|z|}$$
.

This result is well known.

Lemma 2.2 ([5]). If p(z) is analytic in E with p(0) = 1 and if λ_1 is a complex number satisfying Re $\lambda_1 \ge 0$, $(\lambda_1 \ne 0)$, then $Re\{p(z)+\lambda_1zp'(z)\} > \beta$ $(0 \le \beta < p)$ implies

$$Re \ p(z) > \beta + (1 - \beta)(2\gamma_1 - 1),$$

where γ_1 is given by

$$\gamma_1 = \int_0^1 \left(1 + t^{\operatorname{Re}\lambda_1}\right)^{-1} dt.$$

Lemma 2.3 ([7]). If p(z) is analytic in E, p(0) = 1 and $Re \ p(z) > \frac{1}{2}$, $z \in E$,

then for any function F analytic in E, the function p * F takes values in the convex hull of the image E under F.

3. Main results

Theorem 3.1. Let $f \in R_k(\alpha, p, n, \rho_1)$ and $g \in R_k(\alpha, p, n, \rho_2)$, and let F = f * g. Then $F \in R_k(\alpha, p, n, \rho_3)$ where

(3.1)
$$\rho_3 = 1 - 2(1 - \rho_1)(1 - \rho_2)$$

The result is sharp.

Proof. Since $f \in R_k(\alpha, p, n, \rho_1)$, it follows that

$$H(z) = \left[(1-\alpha)\frac{L_{n+p-1}f(z)}{z^p} + \alpha \frac{L_{n+p}f(z)}{z^p} \right] \in P_k(\rho_1)$$

and so using (1.3), we have

(3.2)
$$L_{n+p}f(z) = \frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_0^z t^{\frac{\alpha}{1-\alpha}+p-1} H(t) dt.$$

Similarly,

(3.3)
$$L_{n+p}g(z) = \frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_0^z t^{\frac{\alpha}{1-\alpha}+p-1} H^*(t) dt,$$

where $H^* \in P_k(\rho_2)$. Using (3.1) and (3.2), we have

(3.4)
$$L_{n+p}F(z) = \frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_0^z t^{\frac{\alpha}{1-\alpha}+p-1} Q(t) dt,$$

where $Q(z) = \left(\frac{k}{4} + \frac{1}{2}\right)q_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)q_2(z)$. Then

(3.5)
$$L_{n+p}F(z) = \frac{1}{1-\alpha} z^{\frac{-\alpha}{1-\alpha}} \int_0^z t^{\frac{\alpha}{1-\alpha}+p-1} (H * H^*)(t) dt.$$

Now

(3.6)
$$H(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z)$$
$$H^*(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1^*(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2^*(z)$$

where $h_i \in P_k(\rho_1)$ and $h_i^* \in P_k(\rho_2)$, i = 1, 2. Since

$$p_i^*(z) = \frac{h_i^*(z) - \rho_2}{2(1 - \rho_2)} + \frac{1}{2} \in P\left(\frac{1}{2}\right), \quad i = 1, 2,$$

we obtain $(h_i * p_i^*)(z) \in P(\rho_1)$, by using the Herglotz formula. Thus

$$(3.7) h_i * h_i^*(z) \in P(\rho_3)$$

with

$$\rho_3 = 1 - 2(1 - \rho_1)(1 - \rho_2).$$

Using (3.4), (3.5), (3.6), (3.1) and Lemma 2.1, we have

$$\begin{aligned} \operatorname{Re} \, q_i(z) &= \frac{1}{1-\alpha} \int_0^1 u^{\frac{\alpha}{1-\alpha}+p-1} \operatorname{Re}(h_i * h_i^*)(uz) \bigg\} \, du \\ &\geq \frac{1}{1-\alpha} \int_0^1 u^{\frac{\alpha}{1-\alpha}+p-1} \left(2\rho_3 - 1 + \frac{2(1-\rho_3)}{1+u|z|} \right) \, du \\ &> \frac{1}{1-\alpha} \int_0^1 u^{\frac{\alpha}{1-\alpha}+p-1} \left(2\rho_3 - 1 + \frac{2(1-\rho_3)}{1+u} \right) \, du \\ &= \delta - 4(1-\rho_1)(1-\rho_2) \left[\delta - \frac{1}{1-\alpha} \int_0^1 \frac{u^{\frac{\alpha}{1-\alpha}+p-1}}{1+u} \, du \right] \end{aligned}$$

,

362

where $\delta = 1/(\alpha + p(1 - \alpha))$.

From this, we conclude that $F \in R_k(\alpha, p, n, \rho_3)$, where ρ_3 is given by (3.1). We discuss the sharpness as follows. We take

$$H(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{1 + (1 - 2\rho_1)z}{1 - z} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{1 - (1 - 2\rho_1)z}{1 + z}$$
$$H^*(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{1 + (1 - 2\rho_2)z}{1 - z} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{1 - (1 - 2\rho_2)z}{1 + z}.$$

Since

$$\left(\frac{1+(1-2\rho_1)z}{1-z}\right)*\left(\frac{1+(1-2\rho_2)z}{1-z}\right) = 1 - 4(1-\rho_1)(1-\rho_2) + \frac{4(1-\rho_1)(1-\rho_2)}{1-z}$$

it follows from (3.5) that

$$q_i(z) = \frac{1}{1-\alpha} \int_0^1 u^{\frac{\alpha}{1-\alpha}+p-1} \left\{ 1 - 4(1-\rho_1)(1-\rho_2) + \frac{4(1-\rho_1)(1-\rho_2)}{1-uz} \right\} du$$

$$\to \quad \delta - 4(1-\rho_1)(1-\rho_2) \left\{ \delta - \frac{1}{1-\alpha} \int_0^1 \frac{u^{\frac{\alpha}{1-\alpha}+p-1}}{1+u} du \right\} \quad \text{as} \ z \to 1.$$

This completes the proof.

We define $J_c: A(p) \to A(p)$ as follows.

(3.8)
$$J_c(f) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt$$

where c is real and c > -p.

Theorem 3.2. Let $f \in R_k(\alpha, p, n, \rho)$ and $J_c(f)$ be given by (3.8). If

(3.9)
$$\left[(1-\alpha)\frac{L_{n+p}f(z)}{z^p} + \alpha \ \frac{L_{n+p}J_c(f)}{z^p} \right] \in P_k(\rho),$$

then

$$\left\{\frac{L_{n+p}J_c(f)}{z^p}\right\} \in P_k(\gamma), \quad z \in E$$

and

(3.10)
$$\gamma = \rho + (1-\rho)(2\sigma - 1)$$
$$\sigma = \int_0^1 \left[1 + t^{\operatorname{Re} \frac{1-\alpha}{c+p}} \right]^{-1} dt.$$

Proof. From (3.8), we have

363

H. A. Al-Kharsani

$$(c+p)L_{n+p}f(z) = cL_{n+p}J_c(f) + z(L_{n+p}J_c(f))'.$$

Let

(3.11)
$$H_c(z) = \left(\frac{k}{4} + \frac{1}{2}\right)s_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)s_2(z) = \frac{L_{n+p}J_c(f)}{z^p}$$

From (3.9), (3.10) and (3.11), we have

$$\left[(1-\alpha)\frac{L_{n+p}f(z)}{z^p} + \alpha\frac{L_{n+p}J_c(f)}{z^p}\right] = \left[H_c(z) + \frac{1-\alpha}{c+p}zH'_c(z)\right]$$

and consequently

$$\left[s_i(z) + \frac{1-\alpha}{c+p}zs'_i(z)\right] \in P(\rho), \quad i = 1, 2.$$

Using Lemma 2.2, we have $\operatorname{Re}\{s_i(z)\} > \gamma$, where γ is given by (3.10). Thus

$$H_c(z) = \frac{L_{n+p}J_c(z)}{z^p} \in P_k(\gamma)$$

and this completes the proof.

Let

(3.12)
$$J_0(f(z)) = J_0(f) = p \int_0^z \frac{f(t)}{t} dt.$$

Then

$$L_{n+p-1}J_0(f) = pL_{n+p}f$$

and we have the following.

Theorem 3.3. Let $f \in R_k(\alpha, p, n+1, \rho)$. Then $J_0(f) \in R_k(\alpha, p, n, \rho)$ for $z \in E$.

Theorem 3.4. Let $\phi \in C_p$, where C_p is the class of p-valent convex functions, and let $f \in R_k(\alpha, p, n, \rho)$. Then $\phi * f \in R_k(\alpha, p, n, \rho)$ for $z \in E$. *Proof.* Let $G = \phi * f$. Then

$$(1-\alpha)\frac{L_{n+p-1}G(z)}{z^{p}} + \alpha \frac{L_{n+p}G(z)}{z^{p}}$$

$$= (1-\alpha)\frac{L_{n+p-1}(\phi * f)(z)}{z^{p}} + \alpha \frac{L_{n+p}(\phi * f)(z)}{z^{p}}$$

$$= \frac{\phi(z)}{z^{p}} * \left[(1-\alpha)\frac{L_{n+p-1}f(z)}{z^{p}} + \alpha \frac{L_{n+p}f(z)}{z^{p}} \right]$$

$$= \frac{\phi(z)}{z^{p}} * H(z), \quad H \in P_{k}(\rho)$$

$$= \left(\frac{k}{4} + \frac{1}{2}\right) \left\{ (p-\rho) \left(\frac{\phi(z)}{z^{p}} * h_{1}(z)\right) + \rho \right\}$$

$$- \left(\frac{k}{4} - \frac{1}{2}\right) \left\{ (p-\rho) \left(\frac{\phi(z)}{z^{p}} * h_{2}(z)\right) + \rho \right\}, \quad h_{1}, h_{2} \in P.$$

Since $\phi \in C_p$, Re $\frac{\phi(z)}{z^p} > \frac{1}{2}$, $z \in E$ and so using Lemma 2.3, we conclude that $G \in R_k(\alpha, p, n, \rho)$.

Corollary 3.5. Let $\phi_c = \sum_{m=p}^{\infty} \frac{p+c}{m+c} z^m$, (c > -p) is in C_p , then $J_c(f) = \phi_c * f \in R_k(\alpha, p, n, \rho)$.

Corollary 3.6. Let $J_0 f$, defined by (3.12) belong to $R_k(\alpha, p, n, \rho)$. Then $f \in R_k(\alpha, p, n, \rho)$ for $|z| < r_0 = \frac{1}{2 + \sqrt{3}}$.

Proof. $J_0(f) = \psi_0(z) * f(z)$ where $\psi_0(z) = \frac{z^p}{(1-z)^2} \in C_p$ for $|z| < r_0$. Since $L_{n+p-1}J_0(f) = \psi_0 * L_{n+p-1}f$, therefore we have the result using Theorem 3.4. \Box

Theorem 3.7. For $0 \le \alpha_2 < \alpha_1$, $R_k(\alpha_1, p, n, \rho) \subset R_k(\alpha_2, p, n, \rho), z \in E$.

Proof. For $\alpha_2 = 0$, the proof is immediate. Let $\alpha_2 > 0$ and let $f \in R_k(\alpha_1, p, n, \rho)$. Then

$$(1 - \alpha_2) \frac{L_{n+p-1}f(z)}{z^p} + \alpha_2 \frac{L_{n+p}f(z)}{z^p}$$

= $\frac{\alpha_2}{\alpha_1} \left[\left(\frac{\alpha_1}{\alpha_2} - 1 \right) \frac{L_{n+p-1}f(z)}{z^p} + (1 - \alpha_1) \frac{L_{n+p-1}f(z)}{z^p} + \alpha_1 \frac{L_{n+p}f(z)}{z^p} \right]$
= $\left(1 - \frac{\alpha_2}{\alpha_1} \right) H_1(z) + \frac{\alpha_2}{\alpha_1} H_2(z), H_1, H_2 \in P_k(\rho).$

Since $P_k(\rho)$ is a convex set, we conclude that $f \in R_k(\alpha_2, p, n, \rho)$ for $z \in E$. **Theorem 3.8.** Let $f \in R_k(0, p, n, \rho)$. Then

$$f \in R_k(\alpha, p, n, \rho) \text{ for } |z| < r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}} \qquad \alpha \neq \frac{1}{2}, \ 0 < \alpha < 1.$$

Proof. Let

$$\psi_{\alpha}(z) = (1-\alpha)\frac{z^{p}}{1-z} + \alpha \frac{z^{p}}{(1-z)^{2}}$$

= $z^{p} + \sum_{m=2}^{\infty} (1+(m-1)\alpha)z^{m+p-1}, \quad \phi_{\alpha} \in C_{p} \text{ for } |z| < r_{\alpha}$
= $\frac{1}{2\alpha + \sqrt{4\alpha^{2} - 2\alpha + 1}}.$

We can write

$$\left[(1-\alpha)\frac{L_{n+p-1}f(z)}{z^p} + \alpha\frac{L_{n+p}f(z)}{z^p}\right] = \frac{\psi_{\alpha}}{z^p} * f.$$

Applying Corollary 3.6, we see that $f \in R_k(\alpha, p, n, \rho)$ for $|z| < r_{\alpha}$.

References

- M. Acu, A preserving property of the generalized Bernardi integral operator, General Mathematics, 12(3)(2004), 67-71.
- [2] M. K. Aouf and B. A. Al-amri, On certain fractional operators for certain subclasses of prestarlike functions defined by Salagean operator, Journal of Fractional Calculus, 22(2002), 47-56.
- K. Inayat Noor, On subclasses of close-to-convex functions of higher order, Internal. J. Math. Sc., 15(1992), 279-290.
- [4] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
- [5] S. Ponnusamy, Differential subordination and Bazievic functions, preprint.
- [6] G. Sălăgean, Subclasses of univalent functions, Complex Analysis, Fifth Roumanian-Finish Seminar, Lecture Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
- [7] R. Singh and S. Sing, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152.