• Title/Summary/Keyword: Gene regulation

Search Result 2,207, Processing Time 0.031 seconds

Expression patterns of PRDM10 during mouse embryonic development

  • Park, Jin-Ah;Kim, Keun-Cheol
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • It is well known that PR/SET family members participate in transcriptional regulation via chromatin remodeling. PRDM10 might play an essential role in gene expression, but no such evidence has been observed so far. To assess PRDM10 expression at various stages of mouse development, we performed immunohistochemistry using available PRDM10 antibody. Embryos were obtained from three distinct developmental stages. At E8.5, PRDM10 expression was concentrated in the mesodermal and neural crest populations. As embryogenesis proceeded further to E13.5, PRMD10 expression was mainly in mesoderm-derived tissues such as somites and neural crest-derived populations such as the facial skeleton. This expression pattern was consistently maintained to the fetal growth period E16.5 and adult mouse, suggesting that PRDM10 may function in tissue differentiation. Our study revealed that PRDM10 might be a transcriptional regulator for normal tissue differentiation during mouse embryonic development.

Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

  • Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described.

Partial Cloning of Histone Deacetylase Genes from Ganoderma lucidum. (영지에서 Histone Deacetylase 유전자의 부분 클로닝)

  • Kim Sunkyung;Kum Joohee;Choi Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.226-229
    • /
    • 2004
  • Histone deacetylase (HDAC) removes acetyl group in lysine residue of histone protein, which is transferred by histone acetylase. HDAC is important in the stabilization and regulation of gene expression in eukaryotic organisms. PCR has been carried out to clone HDAC genes using cDNA library and genomic DNA as the templates from Ganoderma lucidum isolated in Korea. One 470 bp cDNA gene fragment, and 3 genomic HDAC fragments (585 bp, 589 bp, 630 bp) were amplified. When their deduced amino acid sequences were compared with other fungal HDACs, they showed 59-72% homology.

Immunohistochemical Analysis for Excessive Splenomegaly in Transgenic Mice Expressing Dimeric Erythropoietin

  • Park, Chae-Won;Yun, Sung-Jo;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.111-115
    • /
    • 2010
  • Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. In this study, we analyzed by immunohistochemical methods adaptive mechanisms to excessive erythrocytosis in transgenic (tg) mice expressing dimeric human erythropoietin (dHuEPO) gene. Splenomegaly was observed over 11~21 times in the tg mice. The 2,672 candidate spleen-derived genes were identified through the microarray analysis method, and decreased genes were higher than increased genes in the spleen. The specific proteins in the increased and decreased genes were analyzed by immunohistochemical methods. Our results demonstrate that problems of abnormal splenomegaly would solve in tg mice overexpressing dHuEPO gene.

Association of Hepatocyte Nuclear Factor-$4{\alpha}$ (HNF-$4{\alpha}$) Polymorphisms (rs1884614) with Type 2 Diabetes in Korean Population

  • Kim, Su-Won;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.101-103
    • /
    • 2009
  • The hepatocyte nuclear factor-$4{\alpha}$ (HNF-$4{\alpha}$), transcription factor involved in the regulation of serum lipid and glucose levels, has recently been reported to be associated with type 2 diabetes. Therefore, we investigated the genotype for the rs1884614 of HNF-$4{\alpha}$ gene in Korean population and compared genotype of patients with control group. 100 patients (Male 63, Female 37), who previously underwent type 2 diabetes (T2DM) and 100 controls (Male 36, Female 64) participated in this study. According to our present study there was no association between rs1884614 polymorphism in HNF-$4{\alpha}$ gene and T2DM in Koreans although other reports showed that HNF-$4{\alpha}$ polymorphisms might be associated with the pathogenesis of T2DM in Pima Indians et al. We assume that this finding should contribute to understanding of type 2 diabetes in Korean population in detail at genetic level.

  • PDF

Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli

  • Kim, Yool;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.791-793
    • /
    • 2009
  • Escherichia coli RNase P is composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). Since both subunits are assembled in a 1:1 ratio, expression of M1 RNA and C5 protein should be coordinately regulated for RNase P to be efficiently synthesized in the cell. However, it is not known yet how the coordination occurs. In this study, we investigated how overexpression of C5 protein affects expression of the rnpB gene encoding M1 RNA, using a lysogenic strain, which carries an rnpB-lacZ transcription fusion. Primer extension analysis of rnpB-lacZ fusion transcripts showed that the overexpression of C5 protein increased the amount of the fusion transcripts, suggesting that rnpB expression increases with the increase of intracellular level of C5 protein.

Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression

  • Yeh, Hsin-Sung;Yong, Jeongsik
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.281-285
    • /
    • 2016
  • Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • Kim, Moon-Soo;Kini, Anu Ganesh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.533-541
    • /
    • 2017
  • Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

SR Proteins: Binders, Regulators, and Connectors of RNA

  • Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.

Expression of Escherichia coli DcuS-R Two-Component Regulatory System is Regulated by the Secondary Internal Promoter Which is Activated by CRP-cAMP

  • Oyamada, Tomoya;Yokoyama, Katsushi;Morinaga, Michiko;Suzuki, Masashi;Makino, Kozo
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • The DcuS-R two-component system of Escherichia coli senses $C_{4}-dicarboxylates$ of the medium and regulates expression of the genes related to utilization of them. It is known that phospho-DcuR induces expression of genes such as the dcuB-fumB operon, the frdABCD operon, and the dctA gene. We analyzed promoters of the dcuS-R operon to elucidate the transcriptional regulation system. We found a novel internal promoter within the dcuS gene that is regulated by the transcriptional regulator, CRP-cAMP, in both aerobic and anaerobic conditions.