1 |
Kobayashi, M. and Yamamoto, M. (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox. Signal. 7, 385-394.
DOI
ScienceOn
|
2 |
Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.
|
3 |
Li, W., Jain, M. R., Chen, C., Yue, X., Hebbar, V., Zhou, R. and Kong, A. N. (2005) Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J. Biol. Chem. 280, 28430-28438.
DOI
|
4 |
Li, W. and Kong, A. N. (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91-104.
DOI
ScienceOn
|
5 |
Li, W., Yu, S. W. and Kong, A. N. (2006) Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J. Biol. Chem. 281, 27251-27263.
DOI
|
6 |
Lippman, S. M. and Hawk, E. T. (2009) Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res. 69, 5269-5284.
DOI
ScienceOn
|
7 |
Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L. G., Parnes, H. L., Minasian, L. M., Gaziano, J. M., Hartline, J. A., Parsons, J. K., Bearden, J. D. 3rd, Crawford, E. D., Goodman, G. E., Claudio, J., Winquist, E., Cook, E. D., Karp, D. D., Walther, P., Lieber, M. M., Kristal, A. R., Darke, A. K., Arnold, K. B., Ganz, P. A., Santella, R. M., Albanes, D., Taylor, P. R., Probstfi eld, J. L., Jagpal, T. J., Crowley, J. J., Meyskens, F. L. Jr, Baker, L. H. and Coltman, C. A. Jr. (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 301, 39-51.
DOI
ScienceOn
|
8 |
Liu, J., Furukawa, M., Matsumoto, T. and Xiong, Y. (2002) NEDD8 modifi cation of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell. 10, 1511-1518.
DOI
ScienceOn
|
9 |
Lo, S. C, and Hannink, M. (2006) CAND1-mediated substrate adaptor recycling is required for effi cient repression of Nrf2 by Keap1. Mol. Cell Biol. 26, 1235-1244.
DOI
ScienceOn
|
10 |
McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1- dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element- driven gene expression. J. Biol. Chem. 278, 21592-21600.
DOI
ScienceOn
|
11 |
McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. and Hayes, J. D. (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279, 31556- 31567.
DOI
|
12 |
Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J. D. and Yamamoto, M. (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 294, 1-12.
DOI
|
13 |
Nakayama, K. I. and Nakayama, K. (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer. 6, 369-381.
DOI
ScienceOn
|
14 |
Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541.
DOI
ScienceOn
|
15 |
Nioi, P., Nguyen, T., Sherratt, P. J. and Pickett, C. B. (2005) The carboxy- terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell Biol. 25, 10895-10906.
DOI
ScienceOn
|
16 |
Ohtsubo, T., Kamada, S., Mikami, T., Murakami, H. and Tsujimoto, Y. (1999) Identifi cation of NRF2, a member of the NF-E2 family of transcription factors, as a substrate for caspase-3(-like) proteases. Cell Death Differ. 6, 865-872.
DOI
ScienceOn
|
17 |
Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754.
DOI
ScienceOn
|
18 |
Omenn, G. S., Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Glass, A., Keogh, J. P., Meyskens, F. L., Valanis, B., Williams, J. H., Barnhart, S. and Hammar, S. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155.
DOI
ScienceOn
|
19 |
Petroski, M. D. and Deshaies, R. J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 9-20.
DOI
|
20 |
Pickart, C. M. (2004) Back to the future with ubiquitin. Cell. 116, 181- 190.
DOI
ScienceOn
|
21 |
Sumara, I., Maerki, S. and Peter, M. (2008) E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 18, 84-94.
DOI
ScienceOn
|
22 |
Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., Tashiro, S., Takahashi, S., Shibahara, S., Alam, J., Taketo, M. M., Yamamoto, M. and Igarashi, K. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO. J. 21, 5216-5224.
DOI
ScienceOn
|
23 |
Sykiotis, G. P. and Bohmann, D. (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 3 (112), re3.
DOI
|
24 |
Tong, K. I., Kobayashi, A., Katsuoka, F. and Yamamoto, M. (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311-1320.
|
25 |
Tong, K. I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S. and Yamamoto, M. (2007) Different electrostatic potentials defi ne ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell Biol. 27, 7511-7521.
DOI
ScienceOn
|
26 |
Vogelstein, B. and Kinzler, K. W. (2004) Cancer genes and the pathways they control. Nat. Med. 10, 789-799.
DOI
ScienceOn
|
27 |
Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. and Ting, J. P. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA. 103, 15091-15096.
DOI
ScienceOn
|
28 |
Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789.
DOI
ScienceOn
|
29 |
Zhang, D. D. and Hannink, M. (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell Biol. 23, 8137-8151.
DOI
ScienceOn
|
30 |
Chen, C., Seth, A. K. and Aplin, A. E. (2006) Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol. Cancer Res. 4, 695-707.
DOI
ScienceOn
|
31 |
Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. and Diehl, J. A. (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell Biol. 24, 8477-8486.
DOI
ScienceOn
|
32 |
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell. 144, 646-674.
DOI
ScienceOn
|
33 |
Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell Biol. 23, 7198-7209.
DOI
ScienceOn
|
34 |
Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol. 5, 1001-1007.
DOI
ScienceOn
|
35 |
Furukawa, M. and Xiong, Y. (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell Biol. 25, 162-171.
DOI
ScienceOn
|
36 |
Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell. 100, 57-70.
DOI
ScienceOn
|
37 |
He, C. H., Gong, P., Hu, B., Stewart, D., Choi, M. E., Choi, A. M. and Alam, J. (2001) Identifi cation of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase- 1 gene regulation. J. Biol. Chem. 276, 20858-20865.
DOI
|
38 |
Higa, L. A. and Zhang, H. (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell. Div. 2, 5.
DOI
|
39 |
Huang, H. C., Nguyen, T. and Pickett, C. B. (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA. 97, 12475-12480.
DOI
ScienceOn
|
40 |
Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322.
DOI
ScienceOn
|
41 |
Kaelin, W. G. Jr. (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer. 2, 673-682.
DOI
ScienceOn
|
42 |
Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86.
DOI
ScienceOn
|
43 |
Jain, A. K. and Jaiswal, A. K. (2006) Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J. Biol. Chem. 281, 12132-12142.
DOI
|
44 |
Jeong, W. S., Keum, Y. S., Chen, C., Jain, M. R., Shen, G., Kim, J. H., Li, W. and Kong, A. N. (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 38, 167-176.
DOI
|
45 |
Kang, M. I., Kobayashi, A., Wakabayashi, N., Kim, S. G. and Yamamoto, M. (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. USA. 101, 2046-2051.
DOI
ScienceOn
|
46 |
Karapetian, R. N., Evstafi eva, A. G., Abaeva, I. S., Chichkova, N. V., Filonov, G. S., Rubtsov, Y. P., Sukhacheva, E. A., Melnikov, S. V., Schneider, U., Wanker, E. E. and Vartapetian, A. B. (2005) Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes. Mol. Cell Biol. 25, 1089-1099.
DOI
ScienceOn
|
47 |
Kensler, T. W., Wakabayashi, N. and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116.
DOI
ScienceOn
|
48 |
Keum, Y. S., Jeong, W. S. and Kong, A. N. (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555, 191-202.
DOI
ScienceOn
|