Immunohistochemical Analysis for Excessive Splenomegaly in Transgenic Mice Expressing Dimeric Erythropoietin

  • Park, Chae-Won (Animal Biotechnology, Graduate School of Bio. & Information Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Yun, Sung-Jo (Animal Biotechnology, Graduate School of Bio. & Information Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Min, Kwan-Sik (Animal Biotechnology, Graduate School of Bio. & Information Technology, Institute of Genetic Engineering, Hankyong National University)
  • Received : 2010.06.22
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. In this study, we analyzed by immunohistochemical methods adaptive mechanisms to excessive erythrocytosis in transgenic (tg) mice expressing dimeric human erythropoietin (dHuEPO) gene. Splenomegaly was observed over 11~21 times in the tg mice. The 2,672 candidate spleen-derived genes were identified through the microarray analysis method, and decreased genes were higher than increased genes in the spleen. The specific proteins in the increased and decreased genes were analyzed by immunohistochemical methods. Our results demonstrate that problems of abnormal splenomegaly would solve in tg mice overexpressing dHuEPO gene.

Keywords

References

  1. Benjamin LE, Franklin B (1999): Regulation of the erythropoietin gene. Blood 94:1864-1877.
  2. Bogdanova A, Mihov D, Lutz H, Saan Bianca, Gassmann M, Vogel J (2007): Enhanced erythro-phagocy-tosis in polycythernic rnice overexpressing erythropoietin. Blood 110:762-769. https://doi.org/10.1182/blood-2006-12-063602
  3. Brines ML (2002): What evidance supports use of erythropoietin as a novel neurotherapeutic? Oncology 16:79-89.
  4. Brines ML, Ghezzi P, Keenan S (2000): Erythropoietin crosses the blood-brain barrier to protect ageinst experimental brain injury. Proc Natl Acad Sci USA 97:10526-10531. https://doi.org/10.1073/pnas.97.19.10526
  5. Chuaqui RF, Bonner RF, Best CJM, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, Linehan WM, Knezevic V, Emmert-Buck MR (2002): Post-analysis follow-up and validation of microarray experiments. Nature Genetics 32:509-514.
  6. Cooper RA. Diloy RM, Lando P, Greenverg MS (1972): An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. J Clin Invest 51:3182-3192. https://doi.org/10.1172/JCI107145
  7. Cooper RA, Leslie MH, Knight D, Detweiler DK (1980): Red cell cholesterol enrichment and spur cell anemia in dogs fed a cholesterol-enriched atherogenic diet. J Lipid Res 21:1082-1089.
  8. Cooper RA, Amer EC, Wiley JS, Shattil SJ (1975): Modification of red cell membrane structure by cholesterol-rich lipid dispersions: a model for the primary spur cell defect. J Clin Invest 55:115-126. https://doi.org/10.1172/JCI107901
  9. Digicaylioglu M, Bichet S, Marti H (1995): Localization od specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 92:3717-3720. https://doi.org/10.1073/pnas.92.9.3717
  10. Ehrenreich H, Hasselblatt M, Dembowski C (2002): Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495-505.
  11. Ekblom B, Berglund B (1991): Effect of erythropoietin administration on maximal aerobic power. Scand J Med Sci Sports 1:88-93.
  12. Fischer BM, Voynow JA (2002): Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am J Respir Cell Mol Biol 26:447-452. https://doi.org/10.1165/ajrcmb.26.4.4473
  13. Gruss HJ, Herrmann T, Gattei V, Gloghini A, Pinto A, Carbone A (1997): CD40/CD40 ligand interactions in normal, reactive and malignant lympho-he-matopoietic tissues. Leuk Lymphoma 24:393-422. https://doi.org/10.3109/10428199709055580
  14. Hamaguchi N, Ihara S, Ohdaira T, Nagano H, Iwamatsu A, Tachikawa H, Fukui Y (2007): Pleckstrin-2 selectively interacts with phosphatidylinositol 3-kinase lipid products and regulates actin organization and cell spreading. Biochem Biophy Res Comm 361:270-275. https://doi.org/10.1016/j.bbrc.2007.06.132
  15. Hammarton TC, Mottram JC, Doerig CD (2003): The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitaion. Prog Cell Cycle Res 5:91-101.
  16. Heinicke K, Baum O, Ogunshola O (2006): Excessive erythrocytosis in adult mice overexpressing erythropoietin leads to hepatic, renal, neuronal, and muscular degeneration. Am J Physiol Regul Integr Comp Physiol 291:R947-R956. https://doi.org/10.1152/ajpregu.00152.2006
  17. Hertle DN, Yeckel MF (2007): Distribution of inositol-1,4,5-triphoshpate receptor isotype and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150:625-638. https://doi.org/10.1016/j.neuroscience.2007.09.058
  18. Hu MH, Bauman EM, Roll RL, Yeilding N, Abrams CS(1999): Pleckstrin 2, a widely expressed paralog of pleckstrin involved in actin rearrangement. J Biol Chem 274:21515-21518. https://doi.org/10.1074/jbc.274.31.21515
  19. Jelkman W (1992): Erythropoietin structure, control of production, and function. Physiol Rev 72:449-489. https://doi.org/10.1152/physrev.1992.72.2.449
  20. Kawai M, Harada N, Takeyama H, Okajima K (2010): Neutrophil elastase contributes to the development of ischemia/reperfusion-induced liver injury by decreasing the production of insulin-like growth factor-1 in rats. Translational Research 155:294-304. https://doi.org/10.1016/j.trsl.2010.02.003
  21. Lai PH, Everett R, Wang FF, Arakawa T, Goldwasseer E (1986): Structural characterization of human erythropoietin. J Biol Chem. 261:3116-3121.
  22. Laman JD, Claassen E, Noelle RJ (1996): Functions of CD40 and its lìgand, gp 39 (CD40L). Crit Rev Immunol 16:59-108. https://doi.org/10.1615/CritRevImmunol.v16.i1.40
  23. Lee HG, Lee PY, Kee YJ, Kim SJ, Chung HK, Seo MK, Park JK, Min KS, Chang WK (2003): Effects of changes in glycosylation sites on secretion of recombinant human erythropoietin in cultured CHO cells. Korean J Animal Reprod 27:299-307.
  24. Lynedjian PB (2005): Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signaling in primary hepatocytes. Biochem J 386:113-118. https://doi.org/10.1042/BJ20041425
  25. Mayer M, Hancock RE (2010): Cathelicidins link the endocrine and immunine systerns. Cell Host Microbe 7:257-259. https://doi.org/10.1016/j.chom.2010.04.002
  26. Min KS (2000): Biological functions of N- and O- linked oligisaccharides of equine chorionic gonadotropin and lutropin/choriogonadotropin receptor. Korean J Animal Reprod 24:357-364.
  27. Min KS (2001): Biosynthesis of a biological active single chain equine chorionic gonadotropin. J Life Science 11:103-107.
  28. Min KS, Hattori N, Aikawa K, Shiota K, Ogawa T (1996): Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone: differential role of oligosaccharides in luteinizing hormone and follicle-stimulating hormone-lìke activities. Endocrine J 43:585-593. https://doi.org/10.1507/endocrj.43.585
  29. Min KS, Hiyama T, Seong HH, Hattori S, Tanaka S, shiota K (2004): Biological activities of tethered chorionic gonadotropin (eCG) and its deglycosylated mutants. J Reprod Dev 50:297-304. https://doi.org/10.1262/jrd.50.297
  30. Min KS, Shiota K, Saneyoshi T, Hirosawa M, Ogawa T (1997): Differential role of oligosaccharides in equine chorionic gonadotropin (eCG)/luteinizing hormone (LH) to express follicle stimulating hormone (FSH)-líke and LH-like activities. J Reprod Dev 43:177-179.
  31. Naidansure J, Min KS (2009): Development and characterization of hyperglycosylated recombinant humman erythropoietin (EPO). Reprod Dev Biol 33:77-83.
  32. Oberkofler H, Pfeifenberger A, Soyal S, Felder T, Hahne P, Miller K, Krempler F, Patsch W (2010): Aberrant hepatic TRIB3 gene expresssion in insulin-resistant obese humans. Diabetologia DOI 10.1007.
  33. Okamoto H, Latres E, Liu R (2007): Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis. Diabetes 56:1350-1356. https://doi.org/10.2337/db06-1448
  34. Park JJ, Lee HG, Nam IS, Park HJ, Kim MS, Chung YH, Naidansuren PJ, Kang HY, Lee PY, Park JG, Seong HH, Chang WK, Min KS (2005): Biological activity of recombinant human erythropoietin (EPO) in vivo and in vitro. Reprod Dev Biol 29:69-79.
  35. Ruschitzka FT, Wenger RH, Stallmach T, Quaschning T, de Wit C, Wagner K, Labugger R, Kelm M, Noll G, Rulicke T, Shaw S, Lindberg RL, Rodenwaldt B, Lutz H, Bauer C, Luscher TF, Gassmann M (2000): Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic rnice overexpressing erythropoietin. Proc Natl Acad Sci USA 97:11609-11613. https://doi.org/10.1073/pnas.97.21.11609
  36. Sakaki H, Bothner B, Dell A, Fukuda M (1987): Carbohydrate structure of erythropoietin expressed in Chinese hamster ovarian cells by a human erythropoietin cDNA. J Bio Chem 27:24773-24778.
  37. Schuster SJ, Caro J (1993): Erythropoietin: physiologic basis for clinical application. Vox Sang 65:169-179. https://doi.org/10.1111/j.1423-0410.1993.tb02143.x
  38. Tecle T, Tripathi S, Hartshom KL (2010): Defensins and cathelicidins in lung immunity. Innate Immunity 16:151-159. https://doi.org/10.1177/1753425910365734
  39. Tu X, Wang CC (2005): Pairwise knockdowns of cdc2-related kinases (CRKs) in trypanosome brucei indentified the CRKs for G1/5 and G2/M transitions and demonstrated distinctive cytokinetic regulations between two developmental stages of the organism. Eukaryotic Cell 4:755-764. https://doi.org/10.1128/EC.4.4.755-764.2005
  40. Vogel J, Kiessling I, Heinicke K, Stallmach T, Ossent P, Vogel O, Aulmann M, Frietsch T, Schmid-Schonbein H, Kuschinsky W, Gassmann M (2003): Transgenic mice overexpressing erythropoietin adapt to excessive erythrocytosic by regulating blood viscosity. Blood 102:2278-2284. https://doi.org/10.1182/blood-2003-01-0283
  41. Wagner KF, Katschinski DM, Hasegawa j, Schumacher D, Meller B, Gembruch U, Schramm U, Jelkmann W, Gassmann M, Fandrey J (2001): Chronic inbom erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin. Blood 97:536-542. https://doi.org/10.1182/blood.V97.2.536