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ABSTRACT

Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endo-
thelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating
the roles of glycosylation site added in the biosynthesis and function of recombinant protein. In this study, we
analyzed by immunochistochemical methods adaptive mechanisms to excessive erythrocytosis in transgenic (tg) mice
expressing dimeric human erythropoietin ({HuEPO) gene. Splenomegaly was observed over 11~21 times in the
tg mice. The 2,672 candidate spleen-derived genes were identified through the microarray analysis method, and
decreased genes were higher than increased genes in the spleen. The specific proteins in the increased and decrea-
sed genes were analyzed by immunohistochemical methods. Our results demonstrate that problems of abnormal
splenomegaly would solve in tg mice overexpressing dHuEPO gene.
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INTRODUCTION

Erythropoietin (EPO) is a glycoprotein produced fr-
om a 193-amino acid gene product after an N-terminal
leader sequence containing 27 amino acids is cleaved.
A carboxy-terminal arginine is lost from this 166-amino
acid residue during passage into the circulation leaving
a circulating hormone with 165 amino acids. The mo-
lecular mass of the EPO peptide is about 18 kDa (Lai
et al., 1986). EPO is mainly synthesized in the adult
kidney and circulates in blood plasma, and a small por-
tion of it is synthesized by the liver, and possibly by
macrophages in the bone marrow (Benjamin and Fran-
klin, 1999). Physiologically, EPO is produced in the
fetal liver and adult kidney and primarily stimulates
proliferation, differentiation, and maturation of erythro-
id progenitor cells (erythropoiesis) (Jelkmann, 1992; Schus-
ter and Caro, 1993). In addition, EPO is also expressed
in neuronal cells (Digicaylioglu et al, 1995), can cross
the blood-brain barrier (Brines ef al., 2000), and dis-
plays a protective effect against cerebral stroke and
light-induced retinal degeneration (Brines, 2002; Ehren-
reich et al., 2002).

To follow the consequences of excessive erythrocyto-
sis with a suitable in vivo model, transgenic (tg) mou-
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se line generated. Constitutive overexpression of human
EPO ¢DNA reaches hematocrit values up to 0.89 du-
ring the first eight to nine postmatal weeks (Ruschitzka
et al., 2000; Wagner et al, 2001). Tg mice show a 10-to
12-fold elevation of EPO plasma levels. Plasma volume
was not altered, whereas blood volume in tg mice was
nearly doubled compared with wild-type siblings (Vo-
gel ef al., 2003). The use of microarray and other global
profiling technologies has led to a significant number
of exciting new biological discoveries, and important
correlations between gene-expression patterns and di-
sease states. Nonetheless, it is important that investi-
gators continue to optimize array methodologies and
develop new approaches to producing accurate and ex-
perimentally valid data (Chuaqui et al, 2002),

In earlier studies, we have been studying the recom-
binant glycoproteins (€CG, hFSH, TPO and EPO). It was
found that deglycosylated sites were affected the ex-
pression and biological activity of these recombinant de-
rivatives. Thus glycosylation sites play a pivotal role of
the function and roles (Lee ef al., 2003; Min, 2000; 2001;
Min et al., 1996, 1997, 2004; Park et al., 2005; Kim et al,
2007; Naidansuren and Min, 2009). In the presented
study, we analyzed immunohistochemical methods by
using the increased and decreased genes for excessive
splenomegaly in tg mice expressing dHuEPO gene.
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MATERIALS AND METHODS

Materials

CHO-K1 cells were obtained from the Japanese Can-
cer Research Resources Bank (Tokyo, Japan). General PCR
reaction cocktail (Top-Taq™ Polymerase, 10xbuffer, d-
NTP mixture) purchased from Core Bio System (Seoul,
Korea). Restriction enzymes used were bought from
Takara and Toyobo (Osaka and Tokyo, Japan). Ham's
F-12, Opti- MEM I, serum free CHO-S-SFM II, neo-
mycin analogue G418 and lipofectamine 2000 reagents
were bought from Gibco BRL (MD, USA). Fetal bovine
serum was from Hydone laboratories (Utah, USA). The
EPO ELISA assay kit purchased from R&D systems Inc
(MN, USA. ICR (Institute of Cancer Research) mice pur-
chased from Korea Animal Technology (Koatech) (Se-
oul, Korea). EPO Elisa kit was from R & D system Inc.
(MM, USA). All the other reagents used were from
Wako Pure Chemicals (Osaka, Japan).

Construction of the dHuEPO Gene

The N-terminal EPO domain of the human EPO di-
mer-encoding construct was amplified by polymerase cha-
in reaction (PCR) with a plasmid containing the human
FEPO cDNA (Park et al., 2005), which contains the Asp-
Ile restriction enzyme sites that were used to ligate 2
EPO molecules. The dimeric EPO molecule was con-
structed as previously reported (Min et al., 2004). The
dHuEPO gene was inserted into the expression vector
pBC1 under the control of the goat 3-casein promoter
(designated as pBC1-dHuEPO). The direction of the li-
gated fragment was confirmed by restriction mapping
using Xhol and Sall. The sequence of the entire dHu-
EPO cDNA was verified by automated DNA sequenc-
ing performed using a previously reported method
(Min et al., 2004).

Immunohistochemistry of Spleen Section

We used the ABC complex (Vectastain ABC kit; Vec-
tor Laboratories, Inc.,, Burlingame, CA) for immunohis-
tological staining. Paraffin-embedded sections (thickne-
ss, 4 pum) were deparaffinized with xylene and rehy-
drated with ethanol. Then, the sections were boiled in
10 mM sodium citrate for 10 min and placed on ice
for 20 min. The sections were washed in phosphate-bu-
tfered saline (PBS) and incubated in 3% hydrogen per-
oxide for 10 min to block endogenous peroxidase acti-
vity. After washing in PBS, the sections were incubated
overnight at 4C with the respective primary antibody
diluted in blocking buffer (Elastase, CKR-6 and CDA40,
1:250; TRIB3, PLEK2, ITPR2 and cathelicidin, 1:1,000).
Then, the sections were incubated with the respective
biotinylated secondary antibody (rabbit anti-rat or rat
anti-goat IgG, 1:1,000 dilutions). Antibody binding was

visualized by incubation of the membranes with ABC
for 30 min and development in DAB solution. The sec-
tions were counterstained with hematoxylin and mo-
unted with a cover glass. Finally, the sections were ob-
served under a light microscope.

RESULTS

Immunohistochemistry of Spleen Section

Visual inspection of tg mice at necropsy revealed a
dramatically enlarged spleen, suggesting increased ex-
tramedullar erythropoiesis (Fig. 1). Histologic examina-
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Fig. 1. Immunohistochemical analyses in splenomegaly of tg mi-
ce overexpressing dHuUEPO gene. (A) The spleen sections obta-
ined from wild type and tg mouse were stained with up-regu-
lated gene antibodys, cathelicidin, TRIBs, elastase, and PLEK2. (B)
The sections were stained with the down-regulated gene anti-
bodys, CKR- 6, CD40, and ITPR2. Magnification, x 100.



Excessive Splenomegaly in tg Mice of dHuEPO 113

tion confirmed extramedullar erythropoiesis in the sp-
leen. Whereas a clear separation of white pulp and red
plup (physiologically degrading senescent erythrocytes) was
observed in wild type spleen, the tg spleen revealed an
increased red pulp area with dissected white pulp st-
ructures. We validated expression of selected up-regu-
lated and down-regulated genes using two approaches:
RT-PCR and real-time PCR using RNA isolated from
wild type and tg mice’ spleen (data now shown). By the
microarray results, the increased genes, cathelicidin, TR-
IB3, Elastase, and PLEK2, in tg mice spleen were sh-
own in Fig. 1A. The down-regulation genes, CRK-6,
CD40, and ITPR2, in tg mice spleen were shown Fig
1B. Up-regulation’ result was consistent with the micro-
array expression profiling analysis, although the levels
of fold-change are not the same as in the microarray
analysis and would not be expected to be the same.
However, it was not consistent to microarray analysis
in the down-regulation genes.

DISCUSSION

By generating the dHuUEPO over expressing mouse
line, we aimed to establish a unique animal model to
study the impact of elevated EPO plasma levels and
excessive erythrocytosis. We observed severe degenera-
tive processes in spleen that in concert resulted in mar-
kedly reduced life expectancy of mice (unpublished
data). We analyzed the expressing gene of the abnor-
mal splenomegaly in tg mice of dHUuEPO gene. Sp-
lenomegaly was observed over 11~21 times in the tg
mice. The 2,672 candidate spleen-derived genes were
identified through the microarray analysis method, and
decreased genes were higher than increased genes in
the spleen. The specific proteins in the increased and
decreased genes were analyzed by immunohistoche-
mical methods. :

Bogdanova et al. (2007) reported that macrophages of
EPO tg mice are more active than wt macrophages and
that tg erythrocytes are more attractive for macropha-
ges than wt ones. Thus, in tg mice erythrocyte aging is
accelerated, which results, together with an increased
number and activity of their macrophages, in enhanced
erythrocyte clearance. Moreover, they suggest that a new
mechanism down-regulating red cell mass in excessive
erythrocytosis in mice. They also insist that CD47 loss
of the whole cell population would facilitate erythro-
phagocytosis in tg mice. However, a reduction of CD47
level per surface area on the red cells could be in prin-
ciple also is due to a gain of surface area after the
erythrocytes have left the bone marrow. This has been
observed in patients suffering from cirrhosis of the
alcoholic (Cooper et al., 1972) or in dogs after feeding
with a cholesterol-rich diet (Cooper et al., 1980) and is

mediated by cholesterol incorporation into the erythro-
cyte membrane. This phenomenon could be confirmed
in vitro by incubating red cells with cholesterol-rich
lipid dispersions (Cooper et al, 1975). EPO Tg mice
have a liver pathology since their liver is enlarged and
shows hemosiderin dispositions and inflammatory foci
(Bogdanova et al., 2007). But EPO tg mice do not show
any signs of liver cirrhosis (Heinicke et al., 2006). Some
reports show that a given elevation in hematocrit levels
enhances exercise performance (Ekblom and Berglund,
1991). However, EPO-induced excessive erythrocytosis
in tg mice does not (Heinicke et al., 2006).

Several genes and gene families are up-regulated and
down-regulated in the tg spleen expressing dHuEPO
gene. Tribbles homologoue 3 (TRIB3) is the most abun-
dantly (44-fold) up-regulated gene in tg spleen. It ne-
gatively interferes with insulin-mediated phosphory-
lation and activation of v-akt murine thymoma viral
oncogene homologue (Oberkofler et al, 2010). Alth-
ough, in mice, deletion of TRIB3 did not produce ma-
jor disturbances in insulin signalling and glucose ho-
meostasis (Okamoto et al., 2007), and in cultured rat
hepatocytes adenoviral TRIB3 overexpression failed to
affect insulin mediated AKT1 phosphorylation (Lyne-
djian, 2005). Cathelicidin (LL-37), the second most ab-
undantly (16-fold) up-regulated gene in the tg mice is
an antimicrobial peptide produced by neutrophils and
respiratory epithelial cells that has similar roles in lung
immunity as the defensins (Tecle et al., 2010). In gene-
ral, defensins and LL-37 have two major functions in
host defense; direct inhibition of pathogens and modu-
lation of other innate and adaptive immune responses.
LL-37 plays key roles in host responses to infection
(Mayer and Hancock, 2010). Of interest in the spleen of
tg is the finding of expression and marked (5-fold) up-
regulation of neutrophil elastase (NE). NE decreases the
endothelial production of prostacyclin (PGl through
the inhibition of endothelial nitric oxide synthase (NOS)
activation and thereby contributes to the development
of ischemia-induced liver injury (Kawai et al, 2010).
NE induces MUC5AC gene expression in airway epi-
thelium via a pathway involving reactive oxygen spe-
cies (Fisher and Voynow, 2002). Pleckstrin-2 (PLEK2) is
a 353 amino acid protein identified by the similarity to
PLEKI1. Both PLEK1 and PLEK2 contain two PH do-
mains in their amino- and carboxyl-terminals (Hu et al,
1999). PLEK2 has been implicated to be regulated by
phosphatidylinositol (PI) 3-kinase, while PLEK1 has been
suggested to be a major PKC substrate in platelets (Ha-
maguchi et al., 2007).

In the down-regulated gene in tg mice spleen expre-
ssing dHUEPO gene, CRK-6, cdc2-related kinases (CRK-
s), 1, 2, 3, 4, and 6, were identified in the T. brucei ge-
nome (Hammarton et al., 2003). An RNAi knockdown
of CRK3 expression reduced the growth of the pro-
cyclic form by 91% and the bloodstream form by 69%
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with an enrichment of cells in the G2/M phases in both
forms (Tu and Wang, 2005). CD40 is a 48 kDa integral
membrane protein expressed by cell of B cells, origin,
dentritic cells, monocytes, epithelial cells, endothelial
cells and tumor cells including carcinomas (Gruss et al.,
1997). The CD40/CD40 ligand system has been linked
to the pathogenesis of atherothrombotic complications
in cardiovascular disease. CD40-CD40L interactions are
crucially involved in development of autoimmune di-
sease in a number of animal models (Laman et al., 1996).
Inositol-1,4,5-triphosphate receptors (ITPR2) are two fa-
milies of proteins located on membranes of cellular or-
ganelles that store calcium (Hertle and Yeckel, 2007).
There are three known isotypes of ITPRs. ITPR1 was
observed in pyramidal cells and granule cells, ITTPR2
immunoreactivity was observed in perivascular astro-
cytes and endothelial cells (Hertle and Yeckel, 2007).
The data presented herein offer the opportunity to de-
velop a spleen database of genes expressed in tg mice
expressing dHUEPO gene. The current study validates
using microarray technology to investigate global chan-
ges in gene expression in mice spleen and can be ex-
trapolated to defining the genetic profiles. Finally, this
study sets the stage to develop a screen for candidate
genes in patients with splenomegaly.
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