• Title/Summary/Keyword: Gate charge

Search Result 341, Processing Time 0.027 seconds

The variation of C-V characteristics of thermal oxide grown on SiC wafer with the electrode formation condition (SiC 열산화막의 Electrode형성조건에 따른 C-V특성 변화)

  • Kang, M.J.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.354-357
    • /
    • 2002
  • Thermally grown gate oxide on 4H-SiC wafer was investigated. The oxide layers were grown at l150$^{\circ}C$ varying the carrier gas and post activation annealing conditions. Capacitance-Voltage(C-V) characteristic curves were obtained and compared using various gate electrode such as Al, Ni and poly-Si. The interface trap density can be reduced by using post oxidation annealing process in Ar atmosphere. All of the samples which were not performed a post oxidation annealing process show negative oxide effective charge. The negative oxide effective charges may come from oxygen radical. After the post oxidation annealing, the oxygen radicals fixed and the effective oxide charge become positive. The effective oxide charge is negative even in the annealed sample when we use poly silicon gate. Poly silicon layer was dope by POCl$_3$ process. The oxide layer may be affected by P ions in poly silicon layer due to the high temperature of the POCl$_3$ doping process.

  • PDF

A ZnO nanowire - Au nanoparticle hybrid memory device (ZnO 나노선 - Au 나노입자 하이브리드 메모리 소자)

  • Kim, Sang-Sig;Yeom, Dong-Hyuk;Kang, Jeong-Min;Yoon, Chang-Joon;Park, Byoung-Jun;Keem, Ki-Hyun;Jeong, Dong-Yuong;Kim, Mi-Hyun;Koh, Eui-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.20-20
    • /
    • 2007
  • Nanowire-based field-effect transistors (FETs) decorated with nanoparticles have been greatly paid attention as nonvolatile memory devices of next generation due to their excellent transportation ability of charge carriers in the channel and outstanding capability of charge trapping in the floating gate. In this work, top-gate single ZnO nanowire-based FETs with and without Au nanoparticles were fabricated and their memory effects were characterized. Using thermal evaporation and rapid thermal annealing processes, Au nanoparticles were formed on an $Al_2O_3$ layer which was semi cylindrically coated on a single ZnO nanowire. The family of $I_{DS}-V_{GS}$ curves for the double sweep of the gate voltage at $V_{DS}$ = 1 V was obtained. The device decorated with nanoparticles shows giant hysterisis loops with ${\Delta}V_{th}$ = 2 V, indicating a significant charge storage effect. Note that the hysterisis loops are clockwise which result from the tunneling of the charge carriers from the nanowire into the nanoparticles. On the other hand, the device without nanoparticles shows a negligible countclockwise hysterisis loop which reveals that the influence of oxide trap charges or mobile ions is negligible. Therefore, the charge storage effect mainly comes from the nanoparticles decorated on the nanowire, which obviously demonstrates that the top-gate single ZnO nanowire-based FETs decorated with Au nanoparticles are the good candidate for the application in the nonvolatile memory devices of next generation.

  • PDF

A Study on Threshold Voltage Degradation by Loss Effect of Trapped Charge in IPD Layer for Program Saturation in a MLC NAND Flash Memory (멀티레벨 낸드 플래쉬 메모리 프로그램 포화 영역에서의 IPD 층에 트랩된 전하의 손실 효과에 의한 문턱 전압 저하 특성에 대한 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • This research scrutinizes the data retention characteristics of the MLC NAND Flash Memory instigated by the loss effect of trapped charge when the memory is in the state of program saturation. It is attributed to the threshold voltage saturation phenomenon which engenders an interruption to the linear increase of the voltage in the memory cell. This phenomenon is occasioned by the outflow of the trapped charge from the floating gate to the control gate, which has been programmed by the ISPP (Incremental Step Pulse Programming), via Inter-Poly Dielectric (IPD). This study stipulates the significant degradation of thermal retention characteristics of threshold voltage in the saturation region in contrast to the ones in the linear region. Thus the current study evaluates the data retention characteristics of voltage after the program with a repeated reading test in various measurement conditions. The loss effect of trapped charge is found in the IPD layer located between the floating gate and the control gate especially in the nitride layer of the IPD. After the thermal stress, the trapped charge is de-trapped and displays the impediment of the characteristic of reliability. To increase the threshold saturation voltage in the NAND Flash Memory, the storage ability of the charge in the floating gate must be enhanced with a well-thought-out designing of the module in the IPD layer.

Hysteresis Phenomenon of Hydrogenated Amorphous Silicon Thin Film Transistors for an Active Matrix Organic Light Emitting Diode (능동형 유기 발광 다이오드(AMOLED)에서 발생하는 수소화된 비정질 실리콘 박막 트랜지스터(Hydrogenated Amorphous Silicon Thin Film Transistor)의 이력 (Hysteresis) 현상)

  • Choi, Sung-Hwan;Lee, Jae-Hoon;Shin, Kwang-Sub;Park, Joong-Hyun;Shin, Hee-Sun;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.112-116
    • /
    • 2007
  • We have investigated the hysteresis phenomenon of a hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and analyzed the effect of hysteresis phenomenon when a-Si:H TFT is a pixel element of active matrix organic light emitting diode (AMOLED). When a-Si:H TFT is addressed to different starting gate voltages, such as 10V and 5V, the measured transfer characteristics with 1uA at $V_{DS}$ = 10V shows that the gate voltage shift of 0.15V is occurred due to the different quantities of trapped charge. When the step gate-voltage in the transfer curve is decreased from 0.5V to 0.05V, the gate-voltage shift is decreased from 0.78V to 0.39V due to the change of charge do-trapping rate. The measured OLED current in the widely used 2-TFT pixel show that a gate-voltage of TFT in the previous frame can influence OLED current in the present frame by 35% due to the change of interface trap density induced by different starting gate voltages.

Quantitative Analysis on Voltage Schemes for Reliable Operations of a Floating Gate Type Double Gate Nonvolatile Memory Cell

  • Cho, Seong-Jae;Park, Il-Han;Kim, Tae-Hun;Lee, Jung-Hoon;Lee, Jong-Duk;Shin, Hyung-Cheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.195-203
    • /
    • 2005
  • Recently, a novel multi-bit nonvolatile memory based on double gate (DG) MOSFET is proposed to overcome the short channel effects and to increase the memory density. We need more complex voltage schemes for DG MOSFET devices. In view of peripheral circuits driving memory cells, one should consider various voltage sources used for several operations. It is one of the key issues to minimize the number of voltage sources. This criterion needs more caution in considering a DG nonvolatile memory cell that inevitably requires more number of events for voltage sources. Therefore figuring out the permissible range of operating bias should be preceded for reliable operation. We found that reliable operation largely depends on the depletion conditions of the silicon channel according to charge amount stored in the floating gates and the negative control gate voltages applied for read operation. We used Silvaco Atlas, a 2D numerical simulation tool as the device simulator.

The Design of a Low Power and Wide Swing Charge Pump Circuit for Phase Locked Loop (넓은 출력 전압 범위를 갖는 위상동기루프를 위한 저전압 Charge Pump 회로 설계)

  • Pu, Young-Gun;Ko, Dong-Hyun;Kim, Sang-Woo;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.44-47
    • /
    • 2008
  • In this paper, a new circuit is proposed to minimize the charging and discharging current mismatch in charge pump for UWB PLL application. By adding a common-gate and a common-source amplifier and building the feedback voltage regulator, the high driving charge pump currents are accomplished. The proposed circuit has a wide operation voltage range, which ensures its good performance under the low power supply. The circuit has been implemented in an IBM 0.13um CMOS technology with 1.2V power supply. To evaluate the design effectiveness, some comparisons have been conducted against other circuits in the literature.

Electrical Characteristics of GaAs MESFET's Considering Channel Charge (GaAs MESFET의 채널전하에 의한 전기적 특성해석)

  • Won, Chang-Sub;Yu, Young-Han;Lee, Yong-Kuk;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.52-55
    • /
    • 2004
  • In this paper, we examined channel charge which occurs in electron accumulation after electron velocity saturation. Generally, short gate GaAs MESFET show, saturated electron velocity leading to current salutation. When electron velocity is saturated, deletion layer is stil open channel and it play a key role in deciding saturation current mode we proposed channel charge model in channel after electron velocity saturation.

  • PDF

중성빔 식각을 이용한 Metal Gate/High-k Dielectric CMOSFETs의 저 손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;O, Jong-Sik;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.287-287
    • /
    • 2011
  • ITRS(international technology roadmap for semiconductors)에 따르면 MOS (metal-oxide-semiconductor)의 CD(critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/SiO2를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두되고 있다. 일반적으로 metal gate를 식각시 정확한 CD를 형성시키기 위해서 plasma를 이용한 RIE(reactive ion etching)를 사용하고 있지만 PIDs(plasma induced damages)의 하나인 PICD(plasma induced charging damage)의 발생이 문제가 되고 있다. PICD의 원인으로 plasma의 non-uniform으로 locally imbalanced한 ion과 electron이 PICC(plasma induced charging current)를 gate oxide에 발생시켜 gate oxide의 interface에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 metal gate의 식각공정에 HDP(high density plasma)의 ICP(inductively coupled plasma) source를 이용한 중성빔 시스템을 사용하여 PICD를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. 식각공정조건으로 gas는 HBr 12 sccm (80%)와 Cl2 3 sccm (20%)와 power는 300 w를 사용하였고 200 eV의 에너지로 식각공정시 TEM(transmission electron microscopy)으로 TiN의 anisotropic한 형상을 볼 수 있었고 100 eV 이하의 에너지로 식각공정시 하부층인 HfO2와 높은 etch selectivity로 etch stop을 시킬 수 있었다. 실제 공정을 MOS의 metal gate에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU(North Carolina State University) CVC model로 effective electric field electron mobility를 구한 결과 electorn mobility의 증가를 볼 수 있었고 또한 mos parameter인 transconductance (Gm)의 증가를 볼 수 있었다. 그 원인으로 CP(Charge pumping) 1MHz로 gate oxide의 inteface의 분석 결과 이러한 결과가 gate oxide의 interface trap양의 감소로 개선으로 기인함을 확인할 수 있었다.

  • PDF

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해)

  • Han, Songyeon;Kim, Soojin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.144-152
    • /
    • 2021
  • Understanding charge transfer across the interface between organic semiconductor and gate insulator gives insight into the development of high-performance organic memory as well as highly stable organic field-effect transistors (OFETs). In this work, we firstly unveil a novel interfacial charge transfer mechanism, in which hole transfer from organic semiconductor to polymer insulator was nonlinearly boosted by localized states coupling. For this, OFETs based on rubrene single crystal semiconductor and Mylar gate insulator were fabricated via vacuum lamination, which allows stable repetition of lamination and delamination between semiconductor and gate insulator. The surfaces of rubrene single crystal and Mylar film were selectively degraded by photo-induced oxygen diffusion and UV-ozone treatment, respectively. Consequently, we found that the interfacial charge transfer and resultant bias-stress effect were nonlinearly boosted by coupling between localized states in rubrene and Mylar. In particular, the small number of localized states in rubrene single crystal provided fluent pathway for interfacial charge transport.

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun;Joe, Sung-Min;Yun, Jang-Gn;Shin, Hyung-Cheol;Park, Byung-Gook;Park, Sang-Sik;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.