• Title/Summary/Keyword: Gate Insulator

Search Result 380, Processing Time 0.029 seconds

A Study on the Leakage Current Voltage of Hybrid Type Thin Films Using a Dilute OTS Solution

  • Kim Hong-Bae;Oh Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.21-25
    • /
    • 2006
  • To improve the performance of organic thin film transistor, we investigated the properties of gate insulator's surface according to the leakage current by I-V measurement. The surface was treated by the dilute n-octadecyltrichlorosilane solution. The alkyl group of n-octadecyltrichlorosilane induced the electron tunneling and the electron tunneling current caused the breakdown at high electric field, consequently shifting the breakdown voltage. The 0.5% sample with an electron-rich group was found to have a large leakage current and a low barrier height because of the effect of an energy barrier lowered by, thermionic current, which is called the Schottky contact. The surface properties of the insulator were analyzed by I-V measurement using the effect of Poole-Frankel emission.

  • PDF

Improvement of Carrier Mobility on Silicon-Germanium on Insulator MOSFET Devices with a Strained-Si Layer

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.399-402
    • /
    • 2007
  • The effects of heat treatment on the electrical properties of strained-Si/SiGe-on-insulator (SGOI) devices were examined. We proposed the optimized heat treatment processes for improving the back interfacial electrical properties in SGOI-MOSFET. By applying the additional pre-RTA (rapid thermal annealing) before gate oxidation step and the post-RTA after source/drain dopant activation step, the electrical properties of strained-Si channel on $Si_{1-x}Ge_x$ layer were greatly improved, which resulting the improvement of the driving current, transconductance, and leakage current of SGOI-MOSFET.

Preparation of the SBT Film on the LZO/Si Structure for FRAM Application

  • Im, Jong-Hyun;Jeon, Ho-Seung;Kim, Joo-Nam;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.140-141
    • /
    • 2007
  • To fabricate the metal-ferroelectric-insulator-semiconductor (MFIS) structure for the ferroelectric random access memory (FRAM) application, we prepared the ferroelectric $Sr_{0.9}Bi_{2.1}Ta_2O_9$ (SBT) and the insulator LaZrOx (LZO) thin films on the silicon substrate using a sol-gel method. In this study, we will investigate the feasibility of the SBT/LZO/Si structure as one of the promising gate configuration for the 1-transistor (1-T) type FRAM, by measurements of the electrical properties and the physical properties.

  • PDF

Electrical Characteristics of Triple-Gate RSO Power MOSFET (TGRMOS) with Various Gate Configurations and Bias Conditions

  • Na, Kyoung Il;Won, Jongil;Koo, Jin-Gun;Kim, Sang Gi;Kim, Jongdae;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.425-430
    • /
    • 2013
  • In this paper, we propose a triple-gate trench power MOSFET (TGRMOS) that is made through a modified RESURF stepped oxide (RSO) process, that is, the nitride_RSO process. The electrical characteristics of TGRMOSs, such as the blocking voltage ($BV_{DS}$) and on-state current ($I_{D,MAX}$), are strongly dependent on the gate configuration and its bias condition. In the nitride_RSO process, the thick single insulation layer ($SiO_2$) of a conventional RSO power MOSFET is changed to a multilayered insulator ($SiO_2/SiN_x/TEOS$). The inserted $SiN_x$ layer can create the selective etching of the TEOS layer between the gate oxide and poly-Si layers. After additional oxidation and the poly-Si filling processes, the gates are automatically separated into three parts. Moreover, to confirm the variation in the electrical properties of TGRMOSs, such as $BV_{DS}$ and $I_{D,MAX}$, simulation studies are performed on the function of the gate configurations and their bias conditions. $BV_{DS}$ and $I_{D,MAX}$ are controlled from 87 V to 152 V and from 0.14 mA to 0.24 mA at a 15-V gate voltage. This $I_{D,MAX}$ variation indicates the specific on-resistance modulation.

Fabrication and Characteristics of Pd/Pt Gate MISFET Sensor for Dissolved Hydrogen in Oil (유중 용존수소 감지를 위한 Pd/Pt Gate MISFET 센서의 제조와 그 특성)

  • Baek, Tae-Sung;Lee, Jae-Gon;Choin, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.41-46
    • /
    • 1996
  • The Pd/Pt gate MISFET type hydrogen sensors, for detecting dissolved hydrogen gas in the transformer oil, were fabricated and their characteristics were investigated. These sensors including diffused resister heater and temperature monitoring diode were fabricated on the same chip by a conventional silicon process technique. The differential pair plays a role in minimizing the intrinsic voltage drift of the MISFET. To avoid the drift of the sensors induced by the hydrogen, the gate insulators of both FETs were constructed with double layers of silicon dioxide and silicon nitride. In order to eliminate the blister formation on the surface of the hydrogen sensing gate metal, Pt and Pd double metal layers were deposited on the gate insulator. The hydrogen response of the Pd/Pt gate MISFET suggests that the proposed sensor can detect the dissolved hydrogen in transformer oil with 40mV/10ppm of sensitivity and 0.14mV/day of stability.

  • PDF

Electrical Properties of CuPc FET Using Two-type Electrode Structure (두 가지 타입의 CuPC FET 전극 구조에서의 전기적 특성)

  • Lee, Won-Jae;Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.988-991
    • /
    • 2011
  • We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different device structure as a bottom and top contact FET. Also, we used a $SiO_2$ as a gate insulator and analyzed using a current-voltage (I-V) characteristics of the bottom and top contact CuPc FET device. In order to discuss the channel formation, we were observed the capacitance-gate voltage(C-V) characteristics of the bottom and top contact CuPc FET device.

저온공정을 통한 Pt-silicide SB-MOSFET의 전기적 특성과 공정기술에 관한 연구

  • O, Jun-Seok;Jeong, Jong-Wan;Jo, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.36-36
    • /
    • 2009
  • In this work, we describe a method to fabricate the Pt-silicided SB-MOSFETs with a n-type Silicon-On-Insulator (SOI) substrate as an active layer and demonstrate their electrical and structural properties. The fabricated SB-MOSFETs have novel structure and metal gate without sidewall. The gate oxide with a thickness of 7 nm was deposited by sputtering. Also, this fabrication processes were carried out below $500^{\circ}C$. As a result, Subthreshold swing value and on/off ratio of Fabricated SB MOSFETs was 70 [mV/dec] and $10^8$.

  • PDF

Electrical Stress in High Permittivity TiO2 Gate Dielectric MOSFETs

  • Kim, Hyeon-Seag;S. A. Campbell;D. C. Gilmer
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.94-99
    • /
    • 1998
  • Suitable replacement materials for ultrathin SiO2 in deeply scaled MOSFETs such as lattice polarizable films, which have much higherpermittivities than SiO2, have bandgaps of only 3.0 to 4.0 eV. Due to these small bandgaps, the reliability of these films as a gate insulator is a serious concern. Ramped voltage, time dependent dielectric breakdown, and hot carrier effect measurements were done on 190 layers of TiO2 which were deposited through the metal-organic chemical vapor deposition of titanium tetrakis-isopropoxide (TTIP). Measurements of the high and low frequency capacitance indicate that virtually no interface state are created during constant current injection stress. The increase in leakage upon electrical stress suggests that uncharged, near-interface states may be created in the TiO2 film near the SiO2 interfacial layer that allow a tunneling current component at low bias.

  • PDF

Implementation of Low-Voltage Operation of Pentacene Thin Film Transistors using a self-grown metal-oxide as gate dielectric

  • Kim, Kang-Dae;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.190-193
    • /
    • 2006
  • we implemented pentacene TFTs able to operate at low voltage less than 2V by using ultrathin Al2O3 layer as a gate insulator. The OTFTs exhibited a mobility of $0.27{\pm}0.05\;cm^2/Vs$, an outstanding subthreshold slope of $0.109{\pm}0.027$, and an on/off current ratio of $2.87{\pm}1.07{\times}10^4$. OTFT operated at low voltage, producing 3.5uA at $V_GS$= 2V and $V_DS$= 1.5V.

  • PDF

Characteristics of Sulfide Treated GaAs MISFETs with Photo-CVD Grown $P_3$$N_5$ Gate Insulators (유화처리와 광CVD법 질화인막을 이용한 GaAs MISFET 특성)

  • 최기환;조규성;정윤하
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.72-77
    • /
    • 1994
  • GaAs MISFETs, with photo-CVD grown P$_{3}$N$_{5}$ gate insulator and sulfide treatment, have been fabricated and showed the instability of drain current reduced less than 22 percent for the period of 1.0s~1.0${\times}10^{4}s$. The effective electron mobility and extrinsic transconductance of the device are about 1300cm$^{2}$/V.sec and 1.33mS at room temperature. The C-V characteristics of GaAs MIS Diode and AES analysis are also discussed with respect to effect of sulfide treatment conditions.

  • PDF