• Title/Summary/Keyword: Gas separation membrane

Search Result 424, Processing Time 0.021 seconds

Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes (Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2011
  • The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.

Advanced Membrane Systems for Seawater Desalination. Kinetics of Salts Crystallization from RO Brines Promoted by Polymeric Membranes

  • Curcio, Efrem;Obaidani, Sulaiman Al;Macedonio, Francesca;Profio, Gianluca Di;Gualtieri, Silvia;Drioli, Enrico
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • The reliability of innovative membrane contactors technology (i.e. Gas/Liquid Membrane Contactors, Membrane Distillation/Crystallization) is today increasing for seawater desalination processes, where traditional pressure-driven membrane separation units are routinely operated. Furthermore, conventional membrane operations can be integrated with membrane contactors in order to promote possible improvements in process efficiency, operational stability, environmental impact, water quality and cost. Seawater is the most abundant aqueous solution on the earth: the amount of dissolved salts covers about 3% of its composition, and six elements (Na, Mg, Ca, K, Cl, S) account for more than 90% of ionic species. Recent investigations on Membrane Distillation-Crystallization have shown the possibility to achieve significant overall water recovery factors, to limit the brine disposal problem, and to recover valuable salts (i.e. calcium sulphate, sodium chloride, magnesium sulphate) by combining this technology with conventional RO trains. In this work, the kinetics of $CaSO_4{\cdot}2H_2O,\;NaCl\;and\;MgSO_4{\cdot}7H_2O$ crystallization is experimentally investigated in order to improve the design of the membrane-based crystallization unit.

Synthesis and Characterization of Soluble Co-polyimides for Biogas Purification (바이오가스 정제용 용해성 폴리이미드 공중합체의 합성과 특성분석)

  • Shin, So Ra;Han, Sang Hoon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2015
  • Co-polyimide membranes were prepared by two-step polymerization using semi-alicyclic 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) with five diamines such as 2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA). Synthesized co-polyimides were characterized by FT-IR, viscosity, solubility, DSC, TGA and gas permeation properties, compared with 6FDA-based co-polyimides. All co-polyimides had the intrinsic viscosity of 0.32~0.58 and excellent solubility in various solvents. DOCDA-based co-polyimides had thermal stability over $400^{\circ}C$ although those were lower than 6FDA-based co-polyimides. Gas permeabilities of the copolyimide membranes were measured for $CO_2$ and $CH_4$ at room temperature and presented the trade-off relationship.

Current R&D Trend of Nanofiber Membranes (나노섬유 분리막의 최근 연구개발동향)

  • Kim, Tae Heon
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.395-403
    • /
    • 2012
  • R&D of Nanofiber membrane has been carried out in the various fields, gas, water treatment, energy, and etc, with the continuous growth of membrane technology. There are several preparation methods for nanofiber, i.e. drawing, template synthesis, phase separation, self-assembly, and electrospinning. However, an electrospinning has many advantages such as high productivity, low production cost, easy to select law material, high relative surface area, and easy to functionalize. Nanofiber has been used in the field of membrane technologies such as secondary battery and water treatment fields. For the secondary battery separator, the separators having a high power and high thermal stability can be developed with spread of nanofiber on the commercial PP or PE/PP separators. High functional membranes can be also developed by adding the functional additives like antibacterial materials in the nanofiber membrane. It can be expected the high value added with nanofiber membrane because of its diverse applications from the water treatment to the energy field and because of its various functional advantages.

Review on Graphene Oxide-based Nanofiltration Membrane (산화그래핀 기반 나노여과막의 최신 연구동향)

  • Kim, Dae Woo
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.130-139
    • /
    • 2019
  • Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.

Tutorial Review on Membrane Classification and Preparation Methods (멤브레인 분류 및 제조 방법에 대한 튜토리얼 총설)

  • Moon, Seung Jae;Kim, Young Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.198-208
    • /
    • 2022
  • Membrane can selectively separate various substances such as organic substances, liquids, solutes, vapors, gases, ions or electrons according to the separation technology and various uses. Membranes are largely divided into symmetric membranes and asymmetric membranes, and classified into porous and nonporous structure depending on the presence or absence of pores. Also, the interface of the membrane may be molecularly uniform, or chemically or physically non-uniform. Preparation techniques include melt extrusion, stretching, template leaching, track-etching, solution casting, phase inversion, and solution coating method. The prepared membrane can be applied to various applications such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation and energy fields. This review provides a tutorial on how to prepare membranes according to the classification and types.

A Simultaneous Improvement in $CO_2$ Flux and $CO_2/N_2$ Separation Factor of Sodium-type FAU Zeolite Membranes through 13X Zeolite Beads Embedding (13X 제올라이트 흡착제 충진에 의한 Na형 Faujasite 제올라이트 분리막의 $CO_2/N_2$ 선택도 및 $CO_2$ 투과도 동시 증가 현상)

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Moon, Jong-Ho;Lee, Chang-Ha
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.269-275
    • /
    • 2007
  • Sodium type faujasite(FAU) zeolite membranes with a thickness of 5${\mu}m$ and a Si/Al molar ratio of 1.5 were prepared by the secondary growth process. The $CO_2/N_2$ separation in the vacuum mode was investigated at $30^{\circ}C$ for an equimolar $CO_2-N_2$ mixed gas before and after embedding 13X zeolite beads in the permeate side. The embedded 13X zeolite beads improved both $CO_2$ permeance and $CO_2/N_2$ separation factor, simultaneously. The phenomenon was explained by an increment in the $CO_2$ desorption rate at the FAU zeolite/$\alpha-Al_2O_3$ phase boundary due to an enhanced $CO_2$ escaping through the pore channels of the $\alpha-Al_2O_3$ support layer. In the present paper, it will be emphasized that a hybridization of a membrane with an adsorbent can provide a key to break through the trade-off between permeance and separation factor, generally shown in a membrane separation.

Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis (기체분리용 금속유기구조체 분리막의 최근 연구 동향 및 성과)

  • Ramu, Gokulakrishnan;Jeong, Hae-Kwon
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.1-42
    • /
    • 2017
  • Metal-organic frameworks (MOFs) are nanoporous materials that consist of organic and inorganic moieties, with well-defined crystalline lattices and pore structures. With a judicious choice of organic linkers present in the MOFs with different sizes and chemical groups, MOFs exhibit a wide variety of pore sizes and chemical/physical properties. This makes MOFs extremely attractive as novel membrane materials for gas separation applications. However, the synthesis of high-quality MOF thin films and membranes is quite challenging due to difficulties in controlling the heterogeneous nucleation/growth and achieving strong attachment of films on porous supports. Microwave-based synthesis technology has made tremendous progress in the last two decades and has been utilized to overcome some of these challenges associated with MOF membrane fabrication. The advantages of microwaves as opposed to conventional synthesis techniques for MOFs include shorter synthesis times, ability to achieve unique and complex structures and crystal size reductions. Here, we review the recent progress on the synthesis of MOF thin films and membranes with an emphasis on how microwaves have been utilized in the synthesis, improved properties achieved and gas separation performance of these films and membranes.

Variation of Single Gas ($SF_6$, $N_2$, $O_2$, $CF_4$) Permeance through Hollow Fiber Polymeric Membranes Depending on Temperature and Pressure (중공사 고분자 분리막을 통한 단일기체($SF_6$, $N_2$, $O_2$, $CF_4$) 투과플럭스의 온도와 압력에 따른 변화특성)

  • Lee, Min-Woo;Lee, Soon-Jae;Kim, Han-Byul;Kim, Sung-Hyun;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • In this study, we investigated the permeation property of single gases ($N_2$, $O_2$, $SF_6$, $CF_4$ through hollow fiber polymeric membrane (PSF, PC, PI) as a function of pressure and temperature to decide operating condition for $SF_6$ gas separation process. The results showed the gas permeation varied differentlydepending on the properties of gases and membrane. When permeance of each gases was represented as a function of temperature and pressure in 3 dimensional space, the surface of permeance was shown approximately flat. Thus, we established permeance models with forms of first-and second-order polynomial. These two models showed high goodness of fit. This indicates that the two polynomial models have enough applicability to predict the gas separation process.

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation (CO2/N2 분리를 위한 SBS/UiO-66 기반의 고투과성 혼합 매질 분리막)

  • Kim, Young Jun;Moon, Seung Jae;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.319-325
    • /
    • 2020
  • In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.