Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.319

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation  

Kim, Young Jun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Moon, Seung Jae (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.30, no.5, 2020 , pp. 319-325 More about this Journal
Abstract
In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.
Keywords
UiO-66; SBS block copolymer; mixed matrix membranes; $CO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Greer, D. Zeller, J. Woroniak, A. Coulter, M. Winchester, M. L. D. Palomares, and D. Pauly, "Global trends in carbon dioxide ($CO_2$) emissions from fuel combustion in marine fisheries from 1950 to 2016", Mar. Policy, 107, 103382 (2019).   DOI
2 M. Kumar, S. Sundaram, E. Gnansounou, C. Larroche, and I. S. Thakur, "Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review", Bioresour. Technol., 247, 1059 (2018).   DOI
3 D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed. Engl., 49, 6058 (2010).   DOI
4 A. A. Olajire, "$CO_2$ capture and separation technologies for end-of-pipe applications - A review", Energy, 35, 2610 (2010).   DOI
5 C.-H. Yu, C.-H. Huang, and C.-S. Tan, "A review of $CO_2$ capture by absorption and adsorption", Aerosol Air Qual. Res., 12, 745 (2012).   DOI
6 Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S.-P. Chai, "Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review", J. Nat. Gas Chem., 21, 282 (2012).   DOI
7 N. Kosinov, J. Gascon, F. Kapteijn, and E. J. M. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016).   DOI
8 M. Saeed, S. Rafiq, L. H. Bergersen, and L. Deng, "Tailoring of water swollen PVA membrane for hosting carriers in $CO_2$ facilitated transport membranes", Sep. Purif. Technol., 179, 550 (2017).   DOI
9 R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, and E. S. Rubin, "Membrane-based carbon capture from flue gas: A review", J. Clean Prod., 103, 286 (2015).   DOI
10 O. d. Q. F. Araujo and J. L. de Medeiros, "Carbon capture and storage technologies: Present scenario and drivers of innovation", Curr. Opin. Chem. Eng., 17, 22 (2017).   DOI
11 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
12 M. Waqas Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, "MIL-125(Ti) based mixed matrix membranes for $CO_2$ separation from $CH_4$ and $N_2$", J. Membr. Sci., 502, 21 (2016).   DOI
13 V. Nafisi and M.-B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture", J. Membr. Sci., 459, 244 (2014).   DOI
14 Z. Hu and D. Zhao, "De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials", Dalton Trans., 44, 19018 (2015).   DOI
15 M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based $CO_2$ separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014).   DOI
16 S. R. Venna and M. A. Carreon, "Metal organic framework membranes for carbon dioxide separation", Chem. Eng. Sci., 124, 3 (2015).   DOI
17 T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I. X. F. X. Llabres, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48 (2015).   DOI
18 S. Edubilli and S. Gumma, "A systematic evaluation of UiO-66 metal organic framework for $CO_2/N_2$ separation", Sep. Purif. Technol., 224, 85 (2019).   DOI
19 C. Y. Chuah, J. Lee, J. Song, and T. H. Bae, "$CO_2/N_2$ separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities", Membranes, 10, 154 (2020).   DOI
20 M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, "A facile synthesis of UiO-66, UiO-67 and their derivatives", Chem. Commun., 49, 9449 (2013).   DOI
21 S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multi- functional amphiphilic micelles for $CO_2$ capture", ChemSusChem, 8, 3783 (2015).   DOI
22 M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. Vankelecom, "Modulated UiO-66-based mixed-matrix membranes for $CO_2$ separation", ACS Appl. Mater. Interfaces, 7, 25193 (2015).   DOI
23 P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu, and J. Wang, "Interfacial growth of a metalorganic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi)", J. Mater. Chem. A, 5, 17933 (2017).   DOI
24 N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for $CO_2$ capture", J. Mater. Chem. A, 7, 14723 (2019).   DOI
25 Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, and Q. Xu, "$UiO-66-NH_2/GO$ composite: Synthesis, characterization and $CO_2$ adsorption performance", Materials, 11, 589 (2018).   DOI