DOI QR코드

DOI QR Code

Synthesis and Characterization of Soluble Co-polyimides for Biogas Purification

바이오가스 정제용 용해성 폴리이미드 공중합체의 합성과 특성분석

  • Shin, So Ra (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Han, Sang Hoon (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 신소라 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 한상훈 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김정훈 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Received : 2015.05.27
  • Accepted : 2015.06.03
  • Published : 2015.06.30

Abstract

Co-polyimide membranes were prepared by two-step polymerization using semi-alicyclic 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) with five diamines such as 2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA). Synthesized co-polyimides were characterized by FT-IR, viscosity, solubility, DSC, TGA and gas permeation properties, compared with 6FDA-based co-polyimides. All co-polyimides had the intrinsic viscosity of 0.32~0.58 and excellent solubility in various solvents. DOCDA-based co-polyimides had thermal stability over $400^{\circ}C$ although those were lower than 6FDA-based co-polyimides. Gas permeabilities of the copolyimide membranes were measured for $CO_2$ and $CH_4$ at room temperature and presented the trade-off relationship.

본 연구에서는 부분지환족 dianhydride인 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA)와 다섯가지 diamine (2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA))을 two-step 이미드화를 통해 공중합하였다. 합성된 폴리이미드 공중합체를 FT-IR, 고유점도, DSC, TGA 그리고 용해도 측정을 통해 구조분석 및 물성을 확인하였다. 또한 6FDA를 dianhydride로 한 공중합체를 같은 방법으로 합성하여 함께 비교하였다. 그 결과, 모든 공중합체는 0.32~0.58의 고유점도를 가졌으며, DOCDA계 공중합체는 6FDA를 포함한 공중합체보다 약간 낮은 값을 보이나 약 $400^{\circ}C$까지 견딜 수 있는 열적 안정성과 여러 가지 용매에 대한 우수한 용해성을 나타내었다. 또한 얻어진 폴리이미드를 이용해 평막을 제조하여 $CO_2$$CH_4$에 대한 기체투과도를 평가하였고 공중합체는 구조변화에 따른 투과-선택도의 상충관계를 보여주었다.

Keywords

References

  1. D. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming", Nature, 344, 529 (1990). https://doi.org/10.1038/344529a0
  2. T. H. Lee, J. Y. Kim, S. H. Chang, H. S. Lee, and I. W. Choi, "A study for separation of $CH_{4}$ and $CO_{2}$ from biogas", Trans. Korean Hydrog. New Energy Soc., 21, 72 (2010).
  3. H. Wang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progress in carbon dioxide separation and capture: A review", J. Environ. Sci., 20, 14 (2008). https://doi.org/10.1016/S1001-0742(08)60002-9
  4. R. D. Noble and S. A. Stern, "Membrane separation technology, principles and applications", Elsevier, Amsterdam, 589 (1995).
  5. D. R. Paul and Y. P. Yampol'skii, "Polymeric gas separation membranes", CRC Press, London, 88-102 (1994).
  6. M. Mulder, "Basic principles of membrane technology", Kluwer Academic Publisher, Dordrecht (1991).
  7. Y. G. Park, S. K. Oh, B. J. Park, and J. H. Kim, "Study of membrane process for biogas purification and enrichment", J. Korea Soc. Waste Management, 30, 783 (2013). https://doi.org/10.9786/kswm.2013.30.8.783
  8. C. H. Choi, Y. M. Kim, and J. H. Chang, "Colorless and Transparent polyimide films for flexible displays", Polym. Sci. Technol., 23, 296 (2012).
  9. H. Ohya, V. V. Kudryavtesv, and S. I. Semenova, "Polyimide membranes: applications, fabrications, and properties", Kodansha, 241 (1996).
  10. M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  11. H. Yamamoto, Y. Mi, S. A. Stern, and A. K. St.Clair, "Structure/permeability relationships of polyimide membranes", J. Polym. Sci. Part B: Polym. Phys., 28, 2291 (1990). https://doi.org/10.1002/polb.1990.090281210
  12. K. Tanaka, H. Kita, K. Okamoto, A. Nakamura, and Y. Kusuki, "The effect of morphology on gas permeability and permselectivity in polyimide based on 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline", Polym. J., 21, 127, (1989). https://doi.org/10.1295/polymj.21.127
  13. L. Shao, L. Liu, S. X. Cheng, Y. D. Huang, and J. Ma, "Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport", J. Membr. Sci., 312, 174 (2008). https://doi.org/10.1016/j.memsci.2007.12.060
  14. S. S. Hosseini and T. S. Chung, "Carbon membranes from blends of PBI and polyimides for $N_{2}/CH_{4}$ and $CO_{2}/CH_{4}$ separation and hydrogen purification", J. Membr. Sci., 328, 174 (2009). https://doi.org/10.1016/j.memsci.2008.12.005
  15. T. Matsumoto, D. Mikamim T. Hashimoto, M. Kaise, R. Takahashi, and S. Kawabata, "Alicyclic polyimides - a colorless and thermally stable polymer for opto-electronic devices", J. Phys: conf. Ser., 187 (2009).
  16. K. Tanaka, M. Okano, H. Toshino, H. Kita, and K. Okamoto, "Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines", J. Polym. Sci. Part B: Polym. Phys., 30, 907 (1992). https://doi.org/10.1002/polb.1992.090300813
  17. K. Miyatake, N. Asano, and M. Watanabe, "Synthesis and properties of novel sulfonated polyimides containing 1,5-naphthylene moieties", J. Polym. Sci. Part A: Polym. Chem., 41, 3901 (2003). https://doi.org/10.1002/pola.10988
  18. T. Matumoto, "Nonaromatic polyimides derived from cycloaliphatic monomers", Macromolecules, 32, 4933 (1999). https://doi.org/10.1021/ma9903862
  19. S. Xiao, Robert Y. M. Huang, and X. Feng, "Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties", Polymer, 48, 5355 (2007). https://doi.org/10.1016/j.polymer.2007.07.010
  20. C. Y. Park, Y. T. Lee, and J. H. Kim "Synthesis of soluble copolyimides using an alicyclic dianhydride and their $CO_{2}/CH_{4}$ separation properties" Membr. J., 24, 1 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.1
  21. K. Y. Chun, H. S. kim, H. S. Han, and Y. I. Joe, "The preparation and the gas permeation characteristics of the soluble polyimides", J. Korean Ind. Eng. Chem., 9, 306 (1998).
  22. H. G. Im, J. H. Kim, H. S. Lee, and T. M. Kim, "Effect of long time physical aging on ultra thin 6FDA-based polyimide films containing carboxyl acid group", Polymer (Korea), 31, 335 (2007).
  23. J. H. Kim, S. B. Lee, and S. Y. Kim "Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties", J. Appl. Polym. Sci. 77, 2756 (1999).