Browse > Article

Variation of Single Gas ($SF_6$, $N_2$, $O_2$, $CF_4$) Permeance through Hollow Fiber Polymeric Membranes Depending on Temperature and Pressure  

Lee, Min-Woo (Center for Water Resource Cycler, Green City Technology Institute, Korea Institute of Science and Technology)
Lee, Soon-Jae (Center for Water Resource Cycler, Green City Technology Institute, Korea Institute of Science and Technology)
Kim, Han-Byul (Center for Water Resource Cycler, Green City Technology Institute, Korea Institute of Science and Technology)
Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University)
Lee, Sang-Hyup (Center for Water Resource Cycler, Green City Technology Institute, Korea Institute of Science and Technology)
Publication Information
Membrane Journal / v.22, no.1, 2012 , pp. 23-34 More about this Journal
Abstract
In this study, we investigated the permeation property of single gases ($N_2$, $O_2$, $SF_6$, $CF_4$ through hollow fiber polymeric membrane (PSF, PC, PI) as a function of pressure and temperature to decide operating condition for $SF_6$ gas separation process. The results showed the gas permeation varied differentlydepending on the properties of gases and membrane. When permeance of each gases was represented as a function of temperature and pressure in 3 dimensional space, the surface of permeance was shown approximately flat. Thus, we established permeance models with forms of first-and second-order polynomial. These two models showed high goodness of fit. This indicates that the two polynomial models have enough applicability to predict the gas separation process.
Keywords
hollow fiber polymeric membrane; permeance; $SF_6$; temperature; pressure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. T. Tsai, "The decomposition products of Sulfur Hexafluoride ($SF_{6}$): Reviews of environmental and health risk analysis", J. Fluor. Chem., 128, 1345 (2007).   DOI   ScienceOn
2 O. Yamamoto, T. Takuma, and M. Kinouchi, "Recovery of $SF_{6}$ from $N_{2}$/$SF_{6}$ Gas mixtures by using a polymer membrane", IEEE Electrical Insulation Magazine, 18, 32 (2002).
3 The Membrane Society of Korea, "Membrane Separation (Basic)", pp. 291-354, Free Academy, Seoul (1996).
4 R. W. Baker, Membrane Technology and Applications. 2nd edn (Chichester ; New York: J. Wiley, pp. 87-157 (2004).
5 J. Kim, B. Yeom, and B. Min, "Tech-trend for polymeric gas separation membranes", Polym. Sci. Technol., 16, 436 (2005).
6 H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and permselectivity variation of $O_{2},\;CF_{4}$, and $SF_{6}$ through polymeric hollow fiber membranes", Membrane Journal, 20, 249 (2010).
7 H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and recovery of $SF_{6}$ gas from $N_{2}$/$SF_{6}$ gas mixtures by using a polymer hollow fiber membranes", Environ. Eng. Res., 33, 47 (2011).
8 D. T. Clausi and W. J. Koros, "Formation of defect-free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000).   DOI   ScienceOn
9 A. F. Ismail, B. C. Ng, and W. A. W. A. Rahman, "Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance", Sep. Purif. Technol., 33, 255 (2003).   DOI   ScienceOn
10 Y. Yampolskii, I. Pinnau, and B. Freeman, "Material science of membranes for gas and vapor separation", pp. 30, John Wiley & Sons, Chichester, UK (2006).
11 R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, "The design of membrane vapor-gas separation systems", J. Membr. Sci., 151, 55 (1998).   DOI   ScienceOn
12 S. A. Stern, S. R. Sampat, and S. S. Kulkarni, "Tests of a "free-volume" model of gas permeation through polymer membranes. II. Pure Ar, $SF_{6},CF_{4}$, and $C_{2},\;H_{2},\;F_{2}$ in polyethylene", J. Polym. Sci., Part B: Polym. Physics, 24, 2149 (1986).   DOI   ScienceOn
13 I. J. Chung, K. R. Lee, and S. T. Hwang, "Separation of CFC-12 from air by polyimide hollow-fiber membrane module", J. Membr. Sci., 105, 177 (1995).   DOI   ScienceOn
14 J. Kim, S. Hong, and S. Park, "Predictive thermodynamic model for gas permeability of gas separation membrane", Korean Chem. Eng. Res., 45, 619 (2007).
15 M. Sadrzadeh, K. Shahidi, and T. Mohammadi, "Effect of operating parameters on pure and mixed gas permeation properties of a synthesized composite PDMS/PA membrane", J. Membr. Sci., 342, 327 (2009).   DOI   ScienceOn
16 R. REID and T. Sherwood, "The properties of gases and liquids", pp. 632-633, McGraw Hill, New York, NY (1968).
17 J. B. Kadane and N. A. Lazar, "Methods and criteria for model selection", J. Am. Statist. Ass., 99, 279 (2004).   DOI   ScienceOn