Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.231

Synthesis and Characterization of Soluble Co-polyimides for Biogas Purification  

Shin, So Ra (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Han, Sang Hoon (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Kim, Jeong-Hoon (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Publication Information
Membrane Journal / v.25, no.3, 2015 , pp. 231-238 More about this Journal
Abstract
Co-polyimide membranes were prepared by two-step polymerization using semi-alicyclic 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) with five diamines such as 2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA). Synthesized co-polyimides were characterized by FT-IR, viscosity, solubility, DSC, TGA and gas permeation properties, compared with 6FDA-based co-polyimides. All co-polyimides had the intrinsic viscosity of 0.32~0.58 and excellent solubility in various solvents. DOCDA-based co-polyimides had thermal stability over $400^{\circ}C$ although those were lower than 6FDA-based co-polyimides. Gas permeabilities of the copolyimide membranes were measured for $CO_2$ and $CH_4$ at room temperature and presented the trade-off relationship.
Keywords
soluble polyimide; gas separation membrane; semi-alicyclic; biogas purification; $CO_2/CH_4$ separation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 R. D. Noble and S. A. Stern, "Membrane separation technology, principles and applications", Elsevier, Amsterdam, 589 (1995).
2 D. R. Paul and Y. P. Yampol'skii, "Polymeric gas separation membranes", CRC Press, London, 88-102 (1994).
3 M. Mulder, "Basic principles of membrane technology", Kluwer Academic Publisher, Dordrecht (1991).
4 Y. G. Park, S. K. Oh, B. J. Park, and J. H. Kim, "Study of membrane process for biogas purification and enrichment", J. Korea Soc. Waste Management, 30, 783 (2013).   DOI
5 C. H. Choi, Y. M. Kim, and J. H. Chang, "Colorless and Transparent polyimide films for flexible displays", Polym. Sci. Technol., 23, 296 (2012).
6 H. Ohya, V. V. Kudryavtesv, and S. I. Semenova, "Polyimide membranes: applications, fabrications, and properties", Kodansha, 241 (1996).
7 M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990).   DOI
8 H. Yamamoto, Y. Mi, S. A. Stern, and A. K. St.Clair, "Structure/permeability relationships of polyimide membranes", J. Polym. Sci. Part B: Polym. Phys., 28, 2291 (1990).   DOI
9 K. Tanaka, H. Kita, K. Okamoto, A. Nakamura, and Y. Kusuki, "The effect of morphology on gas permeability and permselectivity in polyimide based on 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline", Polym. J., 21, 127, (1989).   DOI
10 L. Shao, L. Liu, S. X. Cheng, Y. D. Huang, and J. Ma, "Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport", J. Membr. Sci., 312, 174 (2008).   DOI
11 S. S. Hosseini and T. S. Chung, "Carbon membranes from blends of PBI and polyimides for $N_{2}/CH_{4}$ and $CO_{2}/CH_{4}$ separation and hydrogen purification", J. Membr. Sci., 328, 174 (2009).   DOI
12 T. Matsumoto, D. Mikamim T. Hashimoto, M. Kaise, R. Takahashi, and S. Kawabata, "Alicyclic polyimides - a colorless and thermally stable polymer for opto-electronic devices", J. Phys: conf. Ser., 187 (2009).
13 K. Tanaka, M. Okano, H. Toshino, H. Kita, and K. Okamoto, "Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines", J. Polym. Sci. Part B: Polym. Phys., 30, 907 (1992).   DOI
14 K. Miyatake, N. Asano, and M. Watanabe, "Synthesis and properties of novel sulfonated polyimides containing 1,5-naphthylene moieties", J. Polym. Sci. Part A: Polym. Chem., 41, 3901 (2003).   DOI
15 T. Matumoto, "Nonaromatic polyimides derived from cycloaliphatic monomers", Macromolecules, 32, 4933 (1999).   DOI
16 S. Xiao, Robert Y. M. Huang, and X. Feng, "Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties", Polymer, 48, 5355 (2007).   DOI
17 C. Y. Park, Y. T. Lee, and J. H. Kim "Synthesis of soluble copolyimides using an alicyclic dianhydride and their $CO_{2}/CH_{4}$ separation properties" Membr. J., 24, 1 (2014).   DOI
18 K. Y. Chun, H. S. kim, H. S. Han, and Y. I. Joe, "The preparation and the gas permeation characteristics of the soluble polyimides", J. Korean Ind. Eng. Chem., 9, 306 (1998).
19 H. G. Im, J. H. Kim, H. S. Lee, and T. M. Kim, "Effect of long time physical aging on ultra thin 6FDA-based polyimide films containing carboxyl acid group", Polymer (Korea), 31, 335 (2007).
20 J. H. Kim, S. B. Lee, and S. Y. Kim "Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties", J. Appl. Polym. Sci. 77, 2756 (1999).
21 H. Wang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progress in carbon dioxide separation and capture: A review", J. Environ. Sci., 20, 14 (2008).   DOI
22 D. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming", Nature, 344, 529 (1990).   DOI
23 T. H. Lee, J. Y. Kim, S. H. Chang, H. S. Lee, and I. W. Choi, "A study for separation of $CH_{4}$ and $CO_{2}$ from biogas", Trans. Korean Hydrog. New Energy Soc., 21, 72 (2010).