Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130

Review on Graphene Oxide-based Nanofiltration Membrane  

Kim, Dae Woo (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.29, no.3, 2019 , pp. 130-139 More about this Journal
Abstract
Various two-dimensional nano materials such as graphene, zeolite, and metal-organic framework have been utilized to develop an ultra-thin high-performance membrane for water purification, gas separation, and so on. Particularly, in the case of graphene oxide, synthesis methods and thin film coating techniques have been accumulated and established since early 2000s, therefore graphene oxide has been rapidly applied to membrane field. The multi-layered graphene oxide thin film can filter molecules separately by the molecular sieving of interlayer spacing between adjacent layers, and it is also possible to separate various materials depending on the surface functional groups or the degree of interaction to intercalated materials. This review mainly focuses on the nanofiltration application of graphene oxide. The major factors affecting the separation performance of graphene oxide membrane in solvent are summarized and other technical elements required for the commercialization of graphene oxide membranes will be discussed including stability issue and fabrication method.
Keywords
nanosheet; graphene oxide; membrane; thin film; nanofiltration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. T. Nam, S. J. Kim, K. M. Kang, W.-B. Jung, D. W. Kim, and H.-T. Jung, "Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports", Carbon, 148, 370 (2019).   DOI
2 S. J. Kim, D. W. Kim, K. M. Cho, K. M. Kang, J. Choi, D. Kim, and H.-T. Jung, "Ultrathin graphene oxide membranes on freestanding carbon nanotube supports for enhanced selective permeation in organic solvents", Sci. Rep., 8, 1959 (2018).   DOI
3 Y. Ying, D. Liu, W. Zhang, J. Ma, H. Huang, Q. Yang, and C. Zhong, "High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution", ACS Appl. Mater. Interfaces, 9, 1710 (2017).   DOI
4 Y. Han, Y. Jaing, and C. Gao, "High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes", ACS Appl. Mater. Interfaces, 7, 8147 (2015).   DOI
5 H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng, "Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes", Nat. Commun., 4, 2979 (2013).   DOI
6 C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, and J. Gu, "Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration", ACS Appl. Mater. Interfaces, 9, 11082 (2017).   DOI
7 W.-S. Hung, C.-H. Tsou, M. Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, "Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing", Chem. Mater., 26, 2983 (2014).   DOI
8 W.-S. Hung, T.-J. Lin, Y.-H. Chiao, A. Sengupta, Y.-C. Hsiao, S. R. Wickramasinghe, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, "Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action- induced enhancement of water permeability", J. Mater. Chem. A, 6, 19445 (2018).   DOI
9 X. Xu, F. Lin, Y. Du, X. Zhang, J. Wu, and Z. Xu, "Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection", ACS. Appl. Mater. Interfaces, 8, 12588 (2016).   DOI
10 C.-N. Yeh, K. Raidongia, J. Shao, Q.-H. Yang, and J. Huang, "On the origin of the stability of graphene oxide membranes in water", Nat. Chem., 7, 166 (2015).   DOI
11 H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Cleason, B. D. Freeman, and H. B. Park, "High-performance $CO_2$-philic graphene oxide membranes under wet-conditions", Chem. Commun., 50, 13563 (2014).   DOI
12 A. Ghaffa, L. Zhang, X. Zhu, and B. Chen, "Scalable graphene oxide membranes with tunable water channels and stability for ion rejection", Environ. Sci.: Nano, 6, 904 (2019).   DOI
13 K. Goh, W. Jiang, H. E. Karahan, S. Zhai, L. Wei, D. Yu, A. G. Fane, R. Wang, and Y. Chen, "All-carbon nanoarchitectures as high-performance separation membranes with superior stability", Adv. Funct. Mater., 25, 7348 (2015).   DOI
14 Y. T. Nam, J. Choi, K. M. Kang, D. W. Kim, and H.-T. Jung, "Enhanced stability of laminated graphene oxide membranes for nanofiltration via interfacial amide bonding", ACS Appl. Mater. Interfaces, 8, 27376 (2016).   DOI
15 H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, "Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold", Adv. Funct. Mater., 28, 1803172 (2018).   DOI
16 D. W. Kim, H. Kim, M. L. Jin, and C. J. Ellison, "Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals", Carbon, 148, 28 (2019).   DOI
17 J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yu, and S. O. Kim, "Graphene oxide liquid crystals", Angew. Chem. Int. Ed., 50, 3043 (2011).   DOI
18 S. Kim, J. Choi, C. Choi, J. Heo, D. W. Kim, J. Y. Lee, Y. T. Hong, H.-T. Jung, and H.-T. Kim, "Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries", Nano. Lett., 18, 3962 (2018).   DOI
19 D. K. Lee, S. J. Kim, Y.-J. Kim, H. Choi, D. W. Kim, H.-J. Jeon, C. W. Ahn, J. W. Lee, and H.-T. Jung, "Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties", Adv. Mater. Interfaces, 6, 1801992 (2019).   DOI
20 Y.-H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, "Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films", Adv. Mater., 25, 503 (2013).   DOI
21 S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin, "Water desalination using nanoporous single-layer graphene", Nat. Nanotechnol., 10, 459 (2015).   DOI
22 G. Eda and M. Chhowalla, "Chemically derived graphene oxide: Towards large-area thin film electronics and optoelectronics", Adv. Mater., 22, 2392 (2010).   DOI
23 N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, "Zeolite membranes - A review and comparison with MOFs", Chem. Soc. Rev., 44, 7128 (2015).   DOI
24 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 39, 228 (2010).   DOI
25 G. Liu, W. Jin, and N. Xu, "Graphene-based membranes", Chem. Soc. Rev., 44, 5016 (2015).   DOI
26 J. Ning, L. Hao, M. Jin, X. Qiu, Y. Shen, J. Liang, X. Zhang, B. Wang, X. Li, and L. Zhi, "A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films", Adv. Mater., 29, 1605028 (2017).   DOI
27 J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, "Mechanical properties of monolayer graphene oxide", ACS Nano, 4, 6557 (2010).   DOI
28 S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012).   DOI
29 D. Cohen-Tanugi and J. C. Grossman, "Water desalination across nanoporous graphene", Nano Lett., 12, 3602 (2012).   DOI
30 W. S. Mummers and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958).   DOI
31 D. Kim, D. W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung, and H. Lee, "Intercalation of gas molecules in graphene oxide interlayer: the role of water", J. Phys. Chem. C., 118, 11142 (2014).   DOI
32 S. Zheng, Q. Tu, J. J. Urban, S. Li, and B. Ma, "Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms", ACS Nano, 11, 6440 (2017).   DOI
33 D. Kim, D. W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung, and H. Lee, "Inhibited phase behavior of gas hydrate in graphene oxide: Influences of surface and geometric constraints", Phys. Chem. Chem. Phys., 16, 22717 (2014).   DOI
34 J.-H. Jang, J. Y. Woo, J. Lee, and C.-S. Han, "Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane", Environ. Sci. Technol., 50, 10024 (2016).   DOI
35 D. W. Kim, J. Jang, I. Kim, Y. T. Nam, Y. Jung, and H.-T. Jung, "Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: A combined experimental and theoretical study", J. Phys. Chem. C, 122, 17507 (2018).   DOI
36 H. W. Kim, H. W. Yoon, S. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013).   DOI
37 L. Huang, J. Chen, T. Gao, M. Zhang, Y. Li, L. Dai, L. Qu, and G. Shi, "Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration", Adv. Mater., 28, 8669 (2016).   DOI
38 Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693 (2013).   DOI
39 H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013).   DOI
40 J. Huang, T. Zhuang, Q. Zhang, H. Peng, C. Chen, and F. Wei, "Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries", ACS Nano, 9, 3002 (2015).   DOI
41 J.-S. Kim, D. W. Kim, H.-T. Jung, and J. W. Choi, "Controlled lithium dendrite growth by as synergistic effect of multilayer graphene coating and an electrolyte additive", Chem. Mater., 27, 2780 (2015).   DOI
42 W. Gao, G. Wu, M. T. Janicke, D. A. Cullen, R. Mukundan, J. K. Baldwin, E. L. Brosha, C. Galande, P. M. Ajayan, K. L. More, A. M. Dattelbaum, and P. Zelenay, "Ozonated graphene oxide film as a proton-exchange membrane", Angew. Chem. In. ED., 53, 3588 (2014).   DOI
43 S. Ye and J. Feng, "The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films", RSC Adv., 6, 39681 (2016).   DOI
44 S.-W. Shin, J. S. Kim, S. J. Kim, D. W. Kim, and H.-T. Jung, "Polybenzoxazole/graphene nanocomposite for etching hardmask", J. Ind. Eng. Chem., 75, 296 (2019).   DOI
45 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature, 458, 872 (2009).   DOI
46 D. W. Kim, J. Choi, D. Kim, and H.-T. Jung, "Enhanced water permeation based on nanoporous multilayer graphene membranes: The role of pore size and density", J. Mater. Chem. A, 4, 17773 (2016).   DOI
47 D. W. Kim, I. Kim, J. Jang, Y. T. Nam, K. Park, K. O. Kwon, K. M. Cho, J. Choi, D. Kim, K. M. Kang, S. J. Kim, Y. Jung, and H.-T. Jung, "One dimensional building blocks for molecular separation: laminated graphitic nanoribbons", Nanoscale, 9, 19114 (2017).   DOI
48 Q. Yang, Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A. N. Grigorenko, F. Guinea, A. K. Geim, and R. R. Nair, "Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation", Nat. Mater., 16, 1198 (2017).   DOI
49 A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, "Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide", Nat. Commun., 7, 10891 (2016).   DOI