Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.3.198

Tutorial Review on Membrane Classification and Preparation Methods  

Moon, Seung Jae (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Young Jun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.32, no.3, 2022 , pp. 198-208 More about this Journal
Abstract
Membrane can selectively separate various substances such as organic substances, liquids, solutes, vapors, gases, ions or electrons according to the separation technology and various uses. Membranes are largely divided into symmetric membranes and asymmetric membranes, and classified into porous and nonporous structure depending on the presence or absence of pores. Also, the interface of the membrane may be molecularly uniform, or chemically or physically non-uniform. Preparation techniques include melt extrusion, stretching, template leaching, track-etching, solution casting, phase inversion, and solution coating method. The prepared membrane can be applied to various applications such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation and energy fields. This review provides a tutorial on how to prepare membranes according to the classification and types.
Keywords
membrane classification; preparation method; phase inversion; solution casting;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. Zhang, K. Zhao, Z. Zhang, H. Xie, Z. Li, Z. Lin, C. Mo, W. Yang, X. Wang, and J. Wei, "Polypropylene non-woven supported calcium alginate hydrogel filtration membrane for efficient separation of dye/salt at low salt concentration", Desalination, 500, 114845 (2021).   DOI
2 X. Du, H. Zhang, Y. Yuan, and Z. Wang, "Constructing micro-phase separation structure to improve the performance of anion-exchange membrane based on poly (aryl piperidinium) cross-linked membranes", J. Power Sources, 487, 229429 (2021).   DOI
3 Y. Tang, Y. Lin, W. Ma, and X. Wang, "A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application", J. Membr. Sci., 639, 119759 (2021).   DOI
4 M. S. Park, J. H. Kim, and R. Patel, "PVA-based graft copolymer composite membrane synthesized by free-radical polymerization for CO2 gas separation", Membr. J., 31, 268 (2021).   DOI
5 W. Ward Iii, W. Browall, and R. Salemme, "Ultrathin silicone/polycarbonate membranes for gas separation processes", J. Membr. Sci., 1, 99 (1976).   DOI
6 H. Strathmann, K. Kock, P. Amar, and R. Baker, "The formation mechanism of asymmetric membranes", Desalination, 16, 179 (1975).   DOI
7 A. S. Michaels, "High flow membrane", US patent 3,615,024, October 26 (1971).
8 H. Strathmann, P. Scheible, and R. Baker, "A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes", J. Appl. Polym. Sci., 15, 811 (1971).   DOI
9 J. Wijmans and C. Smolders, "Preparation of asymmetric membranes by the phase inversion process", Synthetic Membranes: Science, Engineering and Applications, 39 (1986).
10 W. R. Browall, "Method for sealing breaches in multi-layer ultrathin membrane composites", US patent 3,980,456, September 14 (1976).
11 F.-J. Tsai, D. Kang, and M. Anand, "Thin-film-composite gas separation membranes: On the dynamics of thin film formation mechanism on porous substrates", Sep. Sci. Technol., 30, 1639 (1995).   DOI
12 R. H. Forester and P. S. Francis, "Method of producing an ultrathin polymer film laminate", US patent 3,551,244, December 29 (1970).
13 S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Saline Water Conversion-II, 117 (1962).
14 R. W. Gore, "Porous products and process therefor", US patent 4,187,390, February 05 (1980).
15 C. Chau and J.-h. Im, "Process of making a porous membrane", US patent 4,874,568, October 17 (1989).
16 J. E. Cadotte, "Evolution of composite reverse osmosis membranes", ACS symposium series, 273 (1985).
17 P. S. Francis, "Fabrication and evaluation of new ultrathin reverse osmosis membranes", Offices of Saline Water Report, 177083 (1966).
18 R. Riley, H. Lonsdale, C. Lyons, and U. Merten, "Preparation of ultrathin reverse osmosis membranes and the attainment of theoretical salt rejection", J. Appl. Polym. Sci., 11, 2143 (1967).   DOI
19 H. A. Gardner and G. G. Sward, "Physical and chemical examination of paints, varnishes, lacquers, and colors", 11 ed., H.A. Gardner Laboratory, Maryland (1950).
20 R. Fleischer, H. Alter, S. Furman, P. Price, and R. Walker, "Particle track etching: Diverse technological uses range from virus identification to uranium exploration", Science, 178, 255 (1972).   DOI
21 C. S. Lee, M. Kang, K. C. Kim, and J. H. Kim, "In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture", J. Membr. Sci., 642, 119913 (2022).   DOI
22 S. Bandehali, A. E. Amooghin, H. Sanaeepur, R. Ahmadi, A. Fuoco, J. C. Jansen, and S. Shirazian, "Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation", Sep. Purif. Technol., 278, 119513 (2021).   DOI
23 N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim, "Effect of PVP on CO2/N2 separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018).   DOI
24 A. Behboudi, S. Ghiasi, T. Mohammadi, and M. Ulbricht, "Preparation and characterization of asymmetric hollow fiber polyvinyl chloride (PVC) membrane for forward osmosis application", Sep. Purif. Technol., 270, 118801 (2021).   DOI
25 S. J. Shin, J. S. Lee, J. G. Lee, and K. H. Youm, "Preparation and Anti-fouling Properties of PVDF mixed matrix asymmetric membranes impregnated with β-cyclodextrin", Membr. J., 31, 434 (2021).   DOI
26 N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture", J. Mater. Chem. A, 7, 14723 (2019).   DOI
27 K. J. Mackenzie, "Film and rials", Kirk-Othmer Encyclopedia of Chemical Technology, 10, 761 (1992).
28 J.-J. Kim, T.-S. Jang, Y.-D. Kwon, U. Y. Kim, and S. S. Kim, "Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method", J. Membr. Sci., 93, 209 (1994).   DOI
29 T. Ichikawa, K. Takahara, K. Shimoda, Y. Seita, and M. Emi, "Hollow fiber membrane and method for manufacture thereof", US patent 4,708,800, November 24 (1987).
30 K. Okuyama and H. Mizutani, "Process for preparing an air-permeable film", US patent 4,585,604, April 29 (1986).
31 G. Lopatin, L. Yen, and R. Rogers, "Microporous membranes from polypropylene", US patent 4,874,567, October 17 (1989).
32 M. Porter, "A novel membrane filter for the laboratory", Am. Lab.(Greens Farms, Conn.), 6, 63 (1974).
33 M. Haubs and W. Hassinger, "Coated fibers", US patent 5,344,702, September 06 (1994).
34 J. E. Gingrich, "The nuclepore story", The 1988 Sixth Annual Membrane Technology/Planning Conference, Cambridge, MA (1988).
35 S. Manjikian, "Desalination membranes from organic casting solutions", Ind. Eng. Chem. Prod. Res. Dev., 6, 23 (1967).
36 R. Riley, H. Lonsdale, and C. Lyons, "Composite membranes for seawater desalination by reverse osmosis", J. Appl. Polym. Sci., 15, 1267 (1971).   DOI
37 S. S. Yoon and S. R. Hong, "Gas permeation characteristics of membrane using poly(ether-b-amide)/ZIF-7", Membr. J., 31, 200 (2021).   DOI
38 H. S. Bierenbaum, R. B. Isaacson, M. L. Druin, and S. G. Plovan, "Microporous polymeric films", Ind. Eng. Chem. Prod. Res. Dev., 13, 2 (1974).   DOI