• 제목/요약/키워드: GaN-based material

검색결과 86건 처리시간 0.031초

원격 플라즈마 원자층 증착법을 이용한 Al2O3/GaN MIS 구조의 제작 및 전기적 특성 (Fabrication and Electrical Properties of Al2O3/GaN MIS Structures using Remote Plasma Atomic Layer Deposition)

  • 윤형선;김현준;이우석;곽노원;김가람;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.350-354
    • /
    • 2009
  • $Al_{2}O_{3}$ thin films were deposited on GaN(0001) by using a Remote Plasma Atomic Layer Deposition(RPALD) technique with a trimethylaluminum(TMA) precursor and oxygen radicals in the temperature range of $25{\sim}500^{\circ}C$. The growth rate per cycle was varied with the substrate temperature from $1.8{\AA}$/cycle at $25^{\circ}C$ to $0.8{\AA}$/cycle at $500^{\circ}C$. The chemical structure of the $Al_{2}O_{3}$ thin films was studied using X-ray photoelectron spectroscopy(XPS). The electrical properties of $Al_{2}O_{3}$/GaN Metal-Insulator-Semiconductor (MIS) capacitor grown at a $300^{\circ}C$ process temperature were excellent, a low electrical leakage current density(${\sim}10^{-10}A/cm^2$ at 1 MV) at room temperature and a high dielectric constant of about 7.2 with a thinner oxide thickness of 12 nm. The interface trap density($D_{it}$) was estimated using a high-frequency C-V method measured at $300^{\circ}C$. These results show that the RPALD technique is an excellent choice for depositing high-quality $Al_{2}O_{3}$ as a Sate dielectric in GaN-based devices.

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

반도체 나노선 전자소자 및 광전소자응용 (Electronic and optical devices based on semiconductor nanowires)

  • 길상철;심성규;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.260-263
    • /
    • 2004
  • During the last few years, there have been many efforts on the fabrication of electronic and optical devices based on semiconductor nanowires. Room-temperature ultraviolet lasing in GaN nanowire, ultraviolet light sensing in ZnO nanowire, and dramatically improved hall mobility in Si nanowire have been demonstrated in this article. The studies on semiconductor nanowire based electronic and optical device is reviewed.

  • PDF

ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상 (Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays)

  • 이삼동;김경국;박재철;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF

질화갈륨 기반 청색 고체 발광 다이오드에서의 스트레스 영향 해석 (Analysis of Stress-Induced Effect in Blue GaN-Based Light-Emitting Diodes)

  • 심상균;이준기;김영만
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.444-447
    • /
    • 2019
  • It was proven that the light outputs of blue GaN-based light-emitting diodes (LEDs) was seriously influenced by the application of external stress. We have simulated the wave function overlap of an electron and hole, which are significantly reduced by the development of stress. Consequently, its internal quantum efficiency decreased from 67.0% to 37.5%. To experimentally investigate the effect of stress, we designed and prepared a special zig system. By applying external tensile stress to compensate for the compressive stress innately developed in Blue LEDs, it was found that the optical output was greatly enhanced from 83.1 mcd to 117.2 mcd at a current of 100 mA, an increase of approximately 41%. In contrast, when the compressive stress is developed more by external compressive stress, we observed that the light output power was reduced from 89.0 mcd to 80.7 mcd, a decrease of approximately 9.3%.

InAs/GaSb 제2형 응력 초격자 nBn 장적외선 검출소자 설계, 제작 및 특성평가 (nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Long Wave Infrared Detection)

  • 김하술;이훈
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.327-334
    • /
    • 2013
  • InAs/GaSb 제2형 응력 초격자(strained layer type II superlattice, T2SL)을 이용한 nBn 구조 장적외선 검출소자의 설계 및 제작을 하였다. InAs와 GaSb 두께에 따른 T2SL 구조의 장적외선 밴드갭 에너지를 Kronig-Penney 모델을 이용하여 계산하였다. 소자의 암전류 밀도를 줄이기 위해서, nBn 구조에서 장벽층인 $Al_{0.2}Ga_{0.8}Sb$ 성장 중에 Te 보상도핑(compansated doping)을 하였다. 온도(T) 80 K 및 인가전압($V_b$) -1.5 V에서, 반응스펙트럼 측정을 통한 소자의 차단파장은 ${\sim}10.2{\mu}m$ (~0.122 eV)로 나타났다. 또한 온도 변화에 따른 암전류 측정으로부터 도출된 활성화 에너지는 0.128 eV로 계산 되었다. T=80 K 및 $V_b$=-1.5 V에서 암전류는 $1.0{\times}10^{-2}A/cm^2$으로 측정되었다. 흑체복사 적외선 광원을 이용한 반응도(Responsivity)는 소자 온도 80 K 및 인가전압 -1.5 V의 조건에서 0.58 A/W로 측정되었다.

Ni-assisted Fabrication of GaN Based Surface Nano-textured Light Emitting Diodes for Improved Light Output Power

  • Mustary, Mumta Hena;Ryu, Beo Deul;Han, Min;Yang, Jong Han;Lysak, Volodymyr V.;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.454-461
    • /
    • 2015
  • Light enhancement of GaN based light emitting diodes (LEDs) have been investigated by texturing the top p-GaN surface. Nano-textured LEDs have been fabricated using self-assembled Ni nano mask during dry etching process. Experimental results were further compared with simulation data. Three types of LEDs were fabricated: Conventional (planar LED), Surface nano-porous (porous LED) and Surface nano-cluster (cluster LED). Compared to planar LED there were about 100% and 54% enhancement of light output power for porous and cluster LED respectively at an injection current of 20 mA. Moreover, simulation result showed consistency with experimental result. The increased probability of light scattering at the nano-textured GaN-air interface is the major reason for increasing the light extraction efficiency.

제조 공정의 개선을 통한 백색 LED 칩의 성능 개선 (The Improvement for Performance of White LED chip using Improved Fabrication Process)

  • 류장렬
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.329-332
    • /
    • 2012
  • LED는 저 전력, 긴 수명, 고 휘도, 빠른 응답, 친환경적인 특성의 여러 장점을 갖고 있기 때문에 청색과 녹색 LED는 교통신호, 옥외 디스플레이, 백색 LED는 LCD 후면광 등의 응용 제품에 사용되고 있다. 여기서 LED의 성능을 향상하기 위하여 출력전력과 소자의 신뢰성을 높이고, 동작전압을 낮추어야 LED 칩의 고효율화가 이루어져야 하는데, 이는 에피택셜층, 표면요철, 패턴이 있는 사파이어 기판, 칩 설계의 최적화, 특수 공정의 개선 등의 기술이 우수해야 한다. 본 연구에서는 측면 에칭 기술과 절연층 삽입기술을 이용하여 사파이어 에피 웨이퍼 위에 GaN-기반 백색 LED 칩을 제작하여 그 성능을 조사하였다. LED 칩의 성능을 개선하기 위한 최적화 설계와 CBL(current blocking layer) 삽입 기술의 개선된 공정을 통하여 LED 칩 성능의 향상을 확인할 수 있었으며, 출력 전력은 광 출력 7cd, 순방향 인가전압 3.2V의 값을 얻었다. 현재의 LCD 후면광원으로 사용되고 있는 LED 칩의 출력에 비하여 성능이 개선되었으며, 의료기기 및 LCD LED TV의 후면광원으로 사용할 수 있을 것으로 기대된다.

Fabraction and efficiency for n-CdS/p-CGS hetrojunction solar cell

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.146-147
    • /
    • 2009
  • $CuGaSe_2$ (CGS) layers were grown by the hot wall epitaxy method. The optimum temperatures of the substrate and source for growth turned out to be 450 and $610^{\circ}C$, respectively. Based on the absorption measurement, the band-gap variation of CGS was well interpreted by the Varshni's equation. By analyzing these emissions, a band diagram of the observed optical transitions was obtained. From the solar cell measurement, an 11.17 % efficiency on the n-CdS/p-CGS junction was achieved.

  • PDF

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • 김도현;김기용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF