Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.444

Analysis of Stress-Induced Effect in Blue GaN-Based Light-Emitting Diodes  

Shim, Sang Kyun (Department of Materials Science & Engineering, Chonnam National University)
Lee, June Key (Department of Materials Science & Engineering, Chonnam National University)
Kim, Youngman (Department of Materials Science & Engineering, Chonnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 444-447 More about this Journal
Abstract
It was proven that the light outputs of blue GaN-based light-emitting diodes (LEDs) was seriously influenced by the application of external stress. We have simulated the wave function overlap of an electron and hole, which are significantly reduced by the development of stress. Consequently, its internal quantum efficiency decreased from 67.0% to 37.5%. To experimentally investigate the effect of stress, we designed and prepared a special zig system. By applying external tensile stress to compensate for the compressive stress innately developed in Blue LEDs, it was found that the optical output was greatly enhanced from 83.1 mcd to 117.2 mcd at a current of 100 mA, an increase of approximately 41%. In contrast, when the compressive stress is developed more by external compressive stress, we observed that the light output power was reduced from 89.0 mcd to 80.7 mcd, a decrease of approximately 9.3%.
Keywords
GaN; LEDs; Strain relaxation; Extrenal stress; Bending; IQE; Optical power;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. J. Koo, Y. J. Song, S. Y. Lee, D. J. Jung, B. H. Kim, K. Kim, Y. Park, and J. K. Lee, Appl. Phy. Lett., 74, 2286 (1999). [DOI: https://doi.org/10.1063/1.123826]   DOI
2 W. Z. Tawfik, G. Y. Hyun, S. J. Lee, S. W. Ryu, J. S. Ha, and J. K. Lee, J. Mater. Sci., 53, 8878 (2018). [DOI: https://doi.org/10.1007/s10853-018-2177-8]   DOI
3 J. L. Yu and S. Y. Lee, Trans. Electr. Electron. Mater., 17, 201 (2016). [DOI: https://doi.org/10.4313/TEEM.2016.17.4.201]   DOI
4 H. J. Park, Y. J. Cha, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 47 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.47]   DOI
5 Y. Jeong, J. Yoo, S. Lee, and J. Hong, Sens. Actuators, A, 135, 215 (2007). [DOI: https://doi.org/10.1016/j.sna.2006.06.073]   DOI
6 M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett., 91, 183501 (2007). [DOI: https://doi.org/10.1063/1.2800290]   DOI
7 J. Bai, T. Wang, and S. Sakai, J. Appl. Phys., 88, 4729 (2000). [DOI: https://doi.org/10.1063/1.1311831]   DOI
8 H. Zhao, R. A. Arif, and T. Tansu, IEEE J. Sel. Top. Quantum Electron., 15, 1104 (2009). [DOI: https://doi.org/10.1109/jstqe.2009.2016576]   DOI
9 S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, Phys. Status Solidi A, 208, 195 (2011). [DOI: https://doi.org/10.1002/pssa.201026420]   DOI
10 S. Yamamoto, Y. Zhao, C. C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express, 3, 122102 (2010). [DOI: https://doi.org/10.1143/apex.3.122102]   DOI
11 W. Z. Tawfik, S. J. Bae, S. B. Yang, T. Jeong, and J. K. Lee, Appl. Phys. Express, 6, 122103 (2013). [DOI: https://doi.org/10.7567/apex.6.122103]   DOI
12 Z. Y. Li, M. H. Lo, C. H. Chiu, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C Wang, J. Appl. Phys., 105, 013103 (2009). [DOI: https://doi.org/10.1063/1.3055264]   DOI