DOI QR코드

DOI QR Code

Analysis of Stress-Induced Effect in Blue GaN-Based Light-Emitting Diodes

질화갈륨 기반 청색 고체 발광 다이오드에서의 스트레스 영향 해석

  • Shim, Sang Kyun (Department of Materials Science & Engineering, Chonnam National University) ;
  • Lee, June Key (Department of Materials Science & Engineering, Chonnam National University) ;
  • Kim, Youngman (Department of Materials Science & Engineering, Chonnam National University)
  • 심상균 (전남대학교 신소재공학부) ;
  • 이준기 (전남대학교 신소재공학부) ;
  • 김영만 (전남대학교 신소재공학부)
  • Received : 2019.09.30
  • Accepted : 2019.10.07
  • Published : 2019.11.01

Abstract

It was proven that the light outputs of blue GaN-based light-emitting diodes (LEDs) was seriously influenced by the application of external stress. We have simulated the wave function overlap of an electron and hole, which are significantly reduced by the development of stress. Consequently, its internal quantum efficiency decreased from 67.0% to 37.5%. To experimentally investigate the effect of stress, we designed and prepared a special zig system. By applying external tensile stress to compensate for the compressive stress innately developed in Blue LEDs, it was found that the optical output was greatly enhanced from 83.1 mcd to 117.2 mcd at a current of 100 mA, an increase of approximately 41%. In contrast, when the compressive stress is developed more by external compressive stress, we observed that the light output power was reduced from 89.0 mcd to 80.7 mcd, a decrease of approximately 9.3%.

Keywords

References

  1. B. J. Koo, Y. J. Song, S. Y. Lee, D. J. Jung, B. H. Kim, K. Kim, Y. Park, and J. K. Lee, Appl. Phy. Lett., 74, 2286 (1999). [DOI: https://doi.org/10.1063/1.123826]
  2. W. Z. Tawfik, G. Y. Hyun, S. J. Lee, S. W. Ryu, J. S. Ha, and J. K. Lee, J. Mater. Sci., 53, 8878 (2018). [DOI: https://doi.org/10.1007/s10853-018-2177-8]
  3. J. L. Yu and S. Y. Lee, Trans. Electr. Electron. Mater., 17, 201 (2016). [DOI: https://doi.org/10.4313/TEEM.2016.17.4.201]
  4. H. J. Park, Y. J. Cha, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 47 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.47]
  5. Y. Jeong, J. Yoo, S. Lee, and J. Hong, Sens. Actuators, A, 135, 215 (2007). [DOI: https://doi.org/10.1016/j.sna.2006.06.073]
  6. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett., 91, 183501 (2007). [DOI: https://doi.org/10.1063/1.2800290]
  7. J. Bai, T. Wang, and S. Sakai, J. Appl. Phys., 88, 4729 (2000). [DOI: https://doi.org/10.1063/1.1311831]
  8. H. Zhao, R. A. Arif, and T. Tansu, IEEE J. Sel. Top. Quantum Electron., 15, 1104 (2009). [DOI: https://doi.org/10.1109/jstqe.2009.2016576]
  9. S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, Phys. Status Solidi A, 208, 195 (2011). [DOI: https://doi.org/10.1002/pssa.201026420]
  10. S. Yamamoto, Y. Zhao, C. C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express, 3, 122102 (2010). [DOI: https://doi.org/10.1143/apex.3.122102]
  11. W. Z. Tawfik, S. J. Bae, S. B. Yang, T. Jeong, and J. K. Lee, Appl. Phys. Express, 6, 122103 (2013). [DOI: https://doi.org/10.7567/apex.6.122103]
  12. Z. Y. Li, M. H. Lo, C. H. Chiu, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C Wang, J. Appl. Phys., 105, 013103 (2009). [DOI: https://doi.org/10.1063/1.3055264]