Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.6.327

nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Long Wave Infrared Detection  

Kim, Ha Sul (Department of Physics, Chonnam National University)
Lee, Hun (Department of Physics, Chonnam National University)
Klein, Brianna (Center for High Technology Materials, University of New Mexico)
Gautam, Nutan (Center for High Technology Materials, University of New Mexico)
Plis, Elena A. (Center for High Technology Materials, University of New Mexico)
Myers, Stephen (Center for High Technology Materials, University of New Mexico)
Krishna, Sanjay (Center for High Technology Materials, University of New Mexico)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.6, 2013 , pp. 327-334 More about this Journal
Abstract
Long-wave infrared detectors using the type-II InAs/GaSb strained superlattice (T2SL) material system with the nBn structure were designed and fabricated. The band gap energy of the T2SL material was calculated as a function of the thickness of the InAs and GaSb layers by the Kronig-Penney model. Growth of the barrier material ($Al_{0.2}Ga_{0.8}Sb$) incorporated Te doping to reduce the dark current. The full width at half maximum (FWHM) of the $1^{st}$ satellite superlattice peak from the X-ray diffraction was around 45 arcsec. The cutoff wavelength of the fabricated device was ${\sim}10.2{\mu}m$ (0.12 eV) at 80 K while under an applied bias of -1.4 V. The measured activation energy of the device was ~0.128 eV. The dark current density was shown to be $1.0{\times}10^{-2}A/cm^2$ at 80 K and with a bias -1.5 V. The responsivity was 0.58 A/W at $7.5{\mu}m$ at 80 K and with a bias of -1.5 V.
Keywords
Long wave infrared detector; Strained layer superlattice (SLS); InAs/GaSb; Kronig-Penney model; Responsivity (R);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Rogalski, Infrared Physics & Technology 43, 187 (2002).   DOI   ScienceOn
2 A. Barve, J. Shao, Y. D. Sharma, T. E. Vandervelde, K. Sankalp, S. J. Lee, S. K. Noh, and S. Krishna, Ieee Journal of Quantum Electronics 46, 1105 (2010).   DOI   ScienceOn
3 G. A. Sai-Halaz, R. Tu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977).   DOI
4 J. O. Kim, H. W. Shin, J. W. CHoe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 245 (2009).   DOI   ScienceOn
5 S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Korean Vac. Soc. 20, 22 (2011).   DOI   ScienceOn
6 E. R. Youngblade, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, C. H. Grein, P.M. Young, H. Ehrenreich, R. H. Miles, and D. H. Chow, Appl. Phys. Lett. 64, 3160 (1994).   DOI   ScienceOn
7 B. M. Nguyen, G. Chen, M. A. Hoang, and M. Razeghi, IEEE Journal of Quantum Electronics 47, 686 (2011).   DOI   ScienceOn
8 N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 98, 121106 (2011).   DOI   ScienceOn
9 P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. Huang, and M. Razeghi, IEEE Journal of Quantum Electronics 45, (2009).
10 B. M. Nguyen1, D. Hoffman1, P. Y. Delaunay1, E. K. W. Huang1, M. Razeghi1, and J. Pellegrino, Appl. Phys. Lett. 93, 163502 (2008).   DOI   ScienceOn
11 S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).   DOI   ScienceOn
12 J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).   DOI   ScienceOn
13 H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008).   DOI   ScienceOn
14 A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007).   DOI   ScienceOn
15 S. Myers, E. Plis, A. Khoshakhlagh, H. S. Kim, Y. Sharma, R. Dawson, S. Krishna, and A. Gin, Appl. Phys. Lett. 95, 121110 (2009).   DOI   ScienceOn
16 H. C. H. Grein, M. E. Flatte, H. Ehrenreich, and R. H. Mile, J. Appl. Phys. 77, 4156 (1995).   DOI   ScienceOn
17 B. H. Hong, S. I. Rybchenko, I. E. Itskevich, and S. K. Haywood, Physical Review B 79, 165323 (2009).   DOI   ScienceOn
18 R. Rehm, J. Schmitz, L. Kirste, and M. Walther, Infrared Physics & Technology 61, 129 (2013).   DOI   ScienceOn