• 제목/요약/키워드: GARCH (1,1)

검색결과 168건 처리시간 0.024초

GARCH 모형을 활용한 비트코인에 대한 체계적 위험분석 (Systematic Risk Analysis on Bitcoin Using GARCH Model)

  • 이중만
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.157-169
    • /
    • 2018
  • The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.

환율 변동성 측정과 GARCH모형의 적용 : 실용정보처리접근법 (Exchange Rate Volatility Measures and GARCH Model Applications : Practical Information Processing Approach)

  • 문창권
    • 통상정보연구
    • /
    • 제12권1호
    • /
    • pp.99-121
    • /
    • 2010
  • This paper reviews the categories and properties of risk measures, analyzes the classes and structural equations of volatility forecasting models, and presents the practical methodologies and their expansion methods of estimating and forecasting the volatilities of exchange rates using Excel spreadsheet modeling. We apply the GARCH(1,1) model to the Korean won(KRW) denominated daily and monthly exchange rates of USD, JPY, EUR, GBP, CAD and CNY during the periods from January 4, 1998 to December 31, 2009, make the estimates of long-run variances in the returns of exchange rate calculated as the step-by-step change rate, and test the adequacy of estimated GARCH(1,1) model using the Box-Pierce-Ljung statistics Q and chi-square test-statistics. We demonstrate the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the monthly series except the semi-variance GARCH(1,1) applied to KRW/JPY100 rate. But we reject the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the daily series because of the very high Box-Pierce-Ljung statistics in the respective time lags resulting to the self-autocorrelation. In conclusion, the GARCH(1,1) model provides for the easy and helpful tools to forecast the exchange rate volatilities and may become the powerful methodology to overcome the application difficulties with the spreadsheet modeling.

  • PDF

Some limiting properties for GARCH(p, q)-X processes

  • Lee, Oesook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.697-707
    • /
    • 2017
  • In this paper, we propose a modified GARCH(p, q)-X model which is obtained by adding the exogenous variables to the modified GARCH(p, q) process. Some limiting properties are shown under various stationary and nonstationary exogenous processes which are generated by another process independent of the noise process. The proposed model extends the GARCH(1, 1)-X model studied by Han (2015) to various GARCH(p, q)-type models such as GJR GARCH, asymptotic power GARCH and VGARCH combined with exogenous process. In comparison with GARCH(1, 1)-X, we expect that many stylized facts including long memory property of the financial time series can be explained effectively by modified GARCH(p, q) model combined with proper additional covariate.

리스크 관리 측면에서 살펴본 다변량 GARCH 모형 선택 (On multivariate GARCH model selection based on risk management)

  • 박세린;백창룡
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1333-1343
    • /
    • 2014
  • 본 연구는 일변량 금융지수의 변동성 모형에서 GARCH(1,1) 모형이 여러 복잡한 GARCH 확장 모형에 비교해서 결코 뒤쳐지지 않는다는 Hansen과 Lunde (2005) 연구를 다변량 변동성으로 확장한다. 또한 모형의 비교 방법으로 예측값에 기반한 평균제곱예측오차 (MSPE) 뿐 만 아니라 리스크 관리 측면에서 최대 손실 금액을 나타내는 VaR 및 사후 검정인 실패율을 동시에 고려하였다. 모의실험 결과 다변량 변동성의 경우에서도 GARCH 모형이 예측력은 크게 다르지는 않았으나 리스크 관리 측면에서는 좀 더 신중한 판단을 요구함을 보인다. 또한 최근 10년동안의 KOSPI, NASDAQ 및 HANG SENG의 주가 지수 실증 자료를 통하여 리스크 관리 측면에서의 다변량 GARCH 모형 선택에 대해서 논의한다.

함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성 (The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2018
  • 초고빈도(ultra high frequency; UHF)시계열의 함수적 변동성 측정을 위한 최신 기법인 함수적 변동성 functional GARCH : fGARCH(1, 1) 모형을 소개하고 설명하였다. 실증분석을 위해 R-code fGARCH(1, 1) 프로그램을 KOSPI/현대차 초고빈도 수익률 자료에 적합하여 예시하였다.

확률적 변동성 모형과 자기회귀이분산 모형의 비교분석 (Stochastic Volatility Model vs. GARCH Model : A Comparative Study)

  • 이용흔;김삼용;황선영
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.217-224
    • /
    • 2003
  • 시간의 경과에 따라 관측된 시계열 자료를 통해 데이터 분석을 하고 적당한 모형을 생성함으로써 미래 시점을 예측하는 방법들은 그 동안 많은 방법들이 제시되었고 연구 되고 있다. 그 중 최근 들어 과거의 데이터를 바탕으로 관측된 각 시점에서의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, Stochastic Volatility(SV))들이 옵션 가격분석이나 환율 변화 등 경제 시계열자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터(1995년 1월 3일부터 2001년 12월 28일, 총 1906일)를 바탕으로 (조건부) 우도함수 모수 추정 방법을 이용한 GARCH(1,1) 모형과, MCMC 방법을 이용하여 모수를 추정한 SV 모형을 적용시켜 보고 각 모형들의 예측 정확도를 비교하여 보았다.

Volatility for High Frequency Time Series Toward fGARCH(1,1) as a Functional Model

  • Hwang, Sun Young;Yoon, Jae Eun
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.73-79
    • /
    • 2018
  • As high frequency (HF, for short) time series is now prevalent in the presence of real time big data, volatility computations based on traditional ARCH/GARCH models need to be further developed to suit the high frequency characteristics. This article reviews realized volatilities (RV) and multivariate GARCH (MGARCH) to deal with high frequency volatility computations. As a (functional) infinite dimensional models, the fARCH and fGARCH are introduced to accommodate ultra high frequency (UHF) volatilities. The fARCH and fGARCH models are developed in the recent literature by Hormann et al. [1] and Aue et al. [2], respectively, and our discussions are mainly based on these two key articles. Real data applications to domestic UHF financial time series are illustrated.

Continuous Time Approximations to GARCH(1, 1)-Family Models and Their Limiting Properties

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.327-334
    • /
    • 2014
  • Various modified GARCH(1, 1) models have been found adequate in many applications. We are interested in their continuous time versions and limiting properties. We first define a stochastic integral that includes useful continuous time versions of modified GARCH(1, 1) processes and give sufficient conditions under which the process is exponentially ergodic and ${\beta}$-mixing. The central limit theorem for the process is also obtained.

Testing the domestic financial data for the normality of the innovation based on the GARCH(1,1) model

  • Lee, Tae-Wook;Ha, Jeong-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.809-815
    • /
    • 2007
  • Since Bollerslev(1986), the GARCH model has been popular in analysing the volatility of the financial time series. In real data analysis, practitioners conventionally put the normal assumption on the innovation random variables of the GARCH model, which is often violated. In this paper, we analyse the domestic financial data based on the GARCH(1,1) model and among existing normality tests, perform the Jarque-Bera test based on the residuals. It is shown that the innovation based on the GARCH(1,1) model dose not follow the normality assumption.

  • PDF

이분산성 시계열 모형(GARCH, IGARCH, EGARCH)들의 성능 비교 (Comparison of a Class of Nonlinear Time Series models (GARCH, IGARCH, EGARCH))

  • 김삼용;이용흔
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2006
  • 최근 들어 시계열 자료 분석에서 관측된 각 시점에서의 관측치의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, EGARCH, IGARCH 등)들이 옵션 가격 분석이나 환율 변화 등 경제적 시계열 자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터 (1999년 1월 4일 $\sim$ 2003년 12월 30일, 총 1227일)를 바탕으로 조건부 우도함수 모수 추정 방법을 이용한 GARCH(1,1), IGARCH(1,1), EGARCH(1,1) 모형에 KOSPI 자료를 적합 시켜 각 모형들의 성능을 비교하여 보았다.