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Abstract

In this paper, we propose a modified GARCH(p, q)-X model which is obtained by
adding the exogenous variables to the modified GARCH(p, q) process. Some limit-
ing properties are shown under various stationary and nonstationary exogenous pro-
cesses which are generated by another process independent of the noise process. The
proposed model extends the GARCH(1, 1)-X model studied by Han (2015) to vari-
ous GARCH(p, q)-type models such as GJR GARCH, asymptotic power GARCH and
VGARCH combined with exogenous process. In comparison with GARCH(1, 1)-X, we
expect that many stylized facts including long memory property of the financial time
series can be explained effectively by modified GARCH(p, q) model combined with
proper additional covariate.

Keywords: Conditional heteroskedasticity, exogenous variable, GARCH-X model, non-
stationarity.

1. Introduction

After Engle (1982) and Bollerslev (1986), various modified version of GARCH models
such as GJR-GARCH, EGARCH, MSGARCH etc. have been proposed and used in ana-
lyzing data from economic, finance and other various fields. The purpose of this variation
is to explain many characteristic phenomena of data, such as many stylized facts and long
memory. In all those models, the equation for conditional volatility is changed while keeping
the same variable. In this paper we consider the generalized GARCH models, obtained by
extending GARCH models with exogenous variables, so-called GARCH-X models. GARCH-
X models as proposed by Hwang and Satchell (2005), Brenner et al. (1996) or Engle and
Patton (2001) directly include the exogenous variable in the basic GARCH specification of
Bollerslev (1986). The GARCH-X model is widely used by empirical researcher and practi-
tioners (Fleming et al., 2008). The idea behind this procedure for financial applications is
that additional sources of information help to better understand the market’s behavior and
hence to improve the prediction of the market’s reactions. We study some limiting properties
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for the modified GARCH(p, q)-X model with stationary and non-stationary exogenous vari-
ables (Park, 2002; Han and Park, 2008; Han, 2015). Asymptotics for the sample variance of
GARCH(p, q)-X under various stationary or nonstationary regressors are given. The proofs
of the theorems in the paper rely on the previous results given by, for example, Davidson
and De Jong (2000), Park and Phillips (1999; 2001), and Han (2015).

In this paper, we consider the modified GARCH(p, q)-X model defined as follows:

yt =σtet, (1.1)

σδt =

p∑
i=1

ci(et−i)σ
δ
t−i +

q∑
j=1

gj(et−j) + u(xt−1), (1.2)

where δ > 0 and ci(·), gj(·) (i = 1, · · · , p, j = 1, · · · , q), and u(·) are real valued nonnegative
continuous function. Let (et) be a sequence of independent and identically distributed(iid)
random variables with mean zero and E(|et|δ) < ∞ for given δ > 0. (xt) represents the
exogenous process used for the improvement of the modeling behavior. We assume that the
process {(yt, xt)} is adapted to Ft, where Ft represents the set of all information available
until time t. We consider the case where exogenous process (xt) is generated by another
process which is independent of the noise process (et), for example, xt = ρxt−1 + vt with
|ρ| ≤ 1, (vt) ∼ iid(0, σ2

v) and (vt) is independent on (et).
When u(x) = 0, then our model includes many well known GARCH-type models, such as

classical GARCH(δ = 2, g(x) = ω, c(x) = β + αx2), GJR GARCH(δ = 2, g(x) = ω, c(x) =
β+ (α+γI{x>0}x

2)), asymmetric power GARCH( ci(et) = αi(|et|−γiet)δ +βi), VGARCH(
gj(et) = ω/p+αj(et+γj)

2, ci(et) = βi), and EGARCH( δ → 0, gj(et) = ω/p+αjet+γj(|et|−
E|et|), ci(et) = βi) etc. Asymptotics and applications for the model given by (1.1) and (1.2)
with u(x) = 0 are studied by many authors, e.g., Atsmegiorgis et al. (2016), Giraitis et al.
(2000), Jeong and Lee (2017), and Lee (2014).

2. Main results

We make the assumption:
(A) ρ0 :=

∑p
i=1E(ci(e0)) < 1 and G =

∑q
j=1E(gj(e0)) <∞.

Theorem 2.1 Consider the process σδt given by (1.1) and (1.2). Suppose that (xt) is station-
ary ergodic and independent of (et) with E(u(xt)) < ∞. Assume p = q. If the assumption
(A) holds, then there is a unique strictly stationary solution σδt to (1.1) and (1.2). The
solution is given as

σδt =

∞∑
k=1

∑
1≤i1,··· ,ik−1≤p

(

p∑
ik=1

gik(et−i1−···−ik) + u(xt−i1−···−ik−1−1))Πk−1
j=1 cij (et−i1−···−ij ).

(2.1)

Here we let Π0
j=1cij (et−i1−···−ij ) = 1.

Proof : We may rewrite the equation (1.2) as

σδt =

p∑
i=1

ci(et−i)σ
δ
t−i + ωt−1, (2.2)
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where ωt−1 :=
∑q
j=1 gj(et−j) + u(xt−1). Applying the equation (2.2) recursively, after m

steps, we have that

σδt =

m∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

ωt−1−i1−···−ik−1
Πk−1
j=1 cij (et−i1−···−ij )

+
∑

1≤i1,i2,··· ,im≤p

Πm
j=1cij (et−i1−···−ij )σδt−i1···−im . (2.3)

From the above equation (2.3), we define

σ̂t
δ =

∞∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

ωt−1−i1−···−ik−1
Πk−1
j=1 cij (et−i1−···−ij ).

Then σ̂t
δ is a nonanticipative strictly stationary solution to (1.1) and (1.2). Since σ̂t

δ is a
solution to the equations (1.1) and (1.2), it satisfies the equation (2.2) and (2.3) . Hence we
have that

E|σδt − σ̂t
δ| = E(

∑
1≤i1,i2,··· ,im≤p

Πm
j=1cij (et−i1−···−ij ))E|σδt−i1−···−im − σ̂

δ
t−i1−···−im |

= ρm0 E|σδt−i1−···−im − σ̂
δ
t−i1−···−im | → 0,

asm→∞, which implies the uniqueness of the solution. Now by independence of ωt−1−i1···−ik
and Πk

j=1cij (et−i1···−ij ) and the assumption (A), E(σ̂t
δ) =

∑∞
k=1 ρ

k−1
0 E(ωt) = (1/(1 −

ρ0))(G+ E(u(xt))) <∞. Take σδt = σ̂t
δ. �

In this paper, we consider the following various cases of generating function for exogenous
variables:

(C1) xt = ρxt−1 + vt, |ρ| ≤ 1, (vt) ∼ iid(0, σ2
v).

(C2) xt = (1− L)−dvt, |d| < 1/2, (vt) ∼ iid(0, σ2
v).

(C3) xt = xt−1 + vt and vt = ψ(L)ηt =
∑∞
k=0 ψkηt−k with ψ0 = 1, ψ(1) 6= 0 and∑∞

k=0 k
1/2|ψk| <∞, (ηt) ∼ iid(0, σ2

η).

(C4) xt = xt−1 + vt and vt = (1−L)−dξt, |d| < 1/2, where ξt satisfies the Assumption 1
in Davidson and De Jong (2000).

For (C1)-(C4), we assume that (et) and (vt) are independent.
Modified GARCH(p, q)-X model with suitable conditions for the additional covariate can

explain many characteristic phenomena of financial data. Covariate given by (C1)-(C4) is
allowed to be stationary short memory, stationary long memory or nonstationary long mem-
ory. For example, consider (xt) in (C2) with vt ∼ iid N(0, σ2

v). Then if −1/2 < d ≤ 1/4,
u(xt) = x2

t is a short memory process. If 1/4 < d < 1/2, then x2
t has long memory with

parameter 2d − 1/2. On the other hand, for (xt) given in (C4), u(xt) is allowed to be a
nonstationary long memory process including an integrated process.



700 Oesook Lee

Let
d−→ denote the convergence in distribution. Likewise, we use

p−→ to signify the con-
vergence in probability. For notational simplicity, we define

ωt :=

q∑
j=1

gj(et+1−j) + u(xt),

and

zt,k := Πk
j=1cij (et−i1···−ij )−Πk

j=1E(cij (et−i1···−ij )).

Lemma 2.1 (stationary case) Suppose that the assumption (A) and either (C1) with |ρ| < 1
or (C2) hold. Then as n→∞,

1

n

n∑
t=1

ωt
p−→ G+ E(u(xt)), (2.4)

1

n

n∑
t=1

ωt−1−i1−···−ikzt,k
p−→ 0. (2.5)

Proof : Under the assumptions, it is known that (xt) is strictly stationary and ergodic.
The equation (2.4) is obtained by applying the ergodic theorem. Note that for fixed k ≥ 1,
(zt,k) is a mean zero process which is strictly stationary ergodic and zt,k is independent of
ωt−1−i1−···−ik . Apply the ergodic theorem again to have the equation (2.5). �

Theorem 2.2 Consider the process yt defined by (1.1), (1.2), and the exogenous process
(xt) generated by the assumption either (C1) with |ρ| < 1 or (C2). If the assumption (A)
and E(u(x)) <∞ hold, then as n→∞,

1

n

n∑
t=1

|yt|δ
p−→ G+ E(u(xt))

1− ρ0
E|et|δ.

Proof : By the assumption (A),

∞∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

Πk−1
j=1E(cij (et−i1···−ij )) =

∞∑
k=1

ρk−1
0

=
1

1− ρ0
. (2.6)

From (2.1), (2.4), (2.5), and (2.6), we have that as n→∞,

1

n

n∑
t=1

σδt =
1

n

n∑
t=1

(

∞∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

ωt−1−i1···−ik−1
Πk−1
j=1 cij (et−i1···−ij ))
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=

∞∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

1

n

n∑
t=1

ωt−1−i1···−ik−1
zt,k−1

+

∞∑
k=1

∑
1≤i1,i2,··· ,ik−1≤p

1

n

n∑
t=1

ωt−1−i1···−ik−1
Πk−1
j=1E(cij (et−i1···−ij ))

p−→ 1

1− ρ0
(G+ E(u(xt))). (2.7)

Also, by applying the ergodic theorem, the equation (2.7), and the independence of σδt and
eδt , we obtain that

1

n

n∑
t=1

|yt|δ =
1

n

n∑
t=1

σδt (|et|δ − E(|et|δ)) + E|et|δ
1

n

n∑
t=1

σδt

p−→ G+ E(u(xt))

1− ρ0
E|et|δ.

�

Note that (xt) given by (C3) or (C4) is a nonstationary integrated process. The behavior
of the model yt with a nonstationary (xt) given by (C3) or (C4) depends on the function
u(·) in (1.2). We assume that the function u(·) is H-regular. For the definitions of regular
and H-regular function, see Park and Phillips (1999,2001). A H-regular function u(·) with
the asymptotic order k and the limit homogeneous function h can be written as u(λx) =
k(λ)h(x) + r(x, λ), h is locally integrable and r is such that (a) |r(x, λ)| ≤ a(λ)p(x), where
lim supλ→∞ a(λ)/k(λ) = 0 and p is locally integrable, or (b) |r(x, λ)| ≤ b(λ)p(x)q(λx), where
lim supλ→∞ b(λ)/k(λ) <∞ and q is locally integrable and vanishes at infinity, i.e., q(x)→ 0
as |x| → ∞. We make the assumption on u(x) in (1.2).

(B) u(x) in (1.2) is a H-regular function with the asymptotic order k and the limit homoge-
neous function h and h is regular.

Now, consider the case where (xt) is given by the assumption (C3). Recall that if ηt is iid
(0, σ2

η), then

Wn(r) :=
1√
n

[nr]∑
t=1

ηt
ση

d−→ W (r), 0 ≤ r ≤ 1,

where W (r) is the standard Brownian motion on the unit interval [0, 1].
Under the assumption (C3), Phillips and Solo (1992) show that

1√
n

[nr]∑
t=1

vt
d−→ ψ(1)σηW (r), 0 ≤ r ≤ 1.

If in addition, h is regular, then

1

n

n∑
t=1

h(
xt√
n

)
d−→

∫ 1

0

h(σvW (r))dr, (2.8)
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where σv = ψ(1)ση (Theorem 3.2 in Park and Phillips, 1999).

Lemma 2.2 (nonstationary case) Suppose the assumption (A), (B), and (C3) hold. If
k(
√
n)→∞ as n→∞, then as n→∞,

1

nk(
√
n)

n∑
t=1

ωt
d−→

∫ 1

0

h(σvW (r))dr. (2.9)

Proof : Assumption (B) implies that u(λx) = k(λ)h(x)+o(k(λ)) for all large λ. The second
part of the assumption (A) implies that

1

nk(
√
n)

n∑
t=1

q∑
j=1

gj(et+1−j) = op(1).

Hence from (2.8) we obtain that

1

nk(
√
n)

n∑
t=1

ωt =
1

nk(
√
n)

n∑
t=1

u(xt) + op(1)

=
1

nk(
√
n)

n∑
t=1

(
k(
√
n)h(

xt√
n

) + op(k(
√
n))

)

=
1

n

n∑
t=1

h(
xt√
n

) + op(1)

d−→
∫ 1

0

h(σvW (r))dr.

�

Theorem 2.3 Suppose that the assumption (A), (B), and (C3) hold. If k(
√
n) → ∞ as

n→∞ and E(ci(e0))l <∞ for some l ≥ 2, then as n→∞,

(1)

n∑
t=1

ωt−1−i1−···−ikzt,k = op(nk(
√
n)), (2.10)

(2)
1

nk(
√
n)

n∑
t=1

|yt|δ
d−→ E|et|δ

1− ρ0

∫ 1

0

h(σvW (r))dr.

Proof : (1) Since zt,k−1 is a mean zero p(k − 1)-dependent process and xt and zt,k are
independent, using Lemma A.2 in Park and Phillips (2001) to get

∑n
t=1 u(xt)zt,k−1 =

op(nk(
√
n)) and the result follows. (2) Use the equation (2.9) and (2.10) to obtain that

1

nk(
√
n)

n∑
t=1

σδt =
1

nk(
√
n)

n∑
t=1

[

∞∑
k=1

∑
1≤i1,··· ,ik−1≤p

ωt−1−i1−···−ik−1
zt,k−1

+

∞∑
k=1

∑
1≤i1,··· ,ik−1≤p

ωt−1−i1−···−ik−1
Πk−1
j=1E(cij (et−i1−···−ij ))]

d−→ 1

1− ρ0

∫ 1

0

h(σvW (r))dr.
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Thus,

1

nk(
√
n)

n∑
t=1

|yt|δ =
1

nk(
√
n)

(

n∑
t=1

σδt (|et|δ − E|et|δ) +

n∑
t=1

σδtE|et|δ)

= op(1) + E|et|δ
1

nk(
√
n)

n∑
t=1

σδt

d−→ E|et|δ

1− ρ0

∫ 1

0

h(σvW (r))dr.

�

Now consider the process (xt) obtained under the assumption (C4). Recall that from
Theorem 3.1 and 4.2 in Davidson and De Jong (2000), we have that

1

σnv

[nr]∑
t=1

vt
d−→ Wd(r), 0 ≤ r ≤ 1

and

1

n

n∑
t=1

xt
σnv

d−→
∫ 1

0

Wd(r)dr, (2.11)

where σ2
nv = E(

∑n
t=1 vt)

2 = Op(n
1+2d). Apply the continuous mapping theorem to (2.11)

to obtain that for a continuous function h,

1

n

n∑
t=1

h(
xt
σnv

)
d−→

∫ 1

0

h(Wd(r))dr. (2.12)

Here Wd(r) denotes a fractional Brownian motion.
Moreover,

1√
n

n∑
t=1

h(
xt
σnv

)ut
d−→

∫ 1

0

h(Wd(r))dU,

if zero mean process ut satisfies the condition in Remark A1 in Han (2015).

Lemma 2.3 Assume (A), (B) and (C4) and k(σnv)→∞ as n→∞. Then

1

nk(σnv)

n∑
t=1

wt
d−→

∫ 1

0

h(Wd(r))dr. (2.13)

Proof :

1

nk(σnv)

n∑
t=1

wt =
1

nk(σnv)

n∑
t=1

k(σnv)h(
xt
σnv

) + op(1)

d−→
∫ 1

0

h(Wd(r)dr.

�
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Theorem 2.4 Assume (A), (B), and (C4). If, in addition, E(ci(e0))l < ∞ for some l ≥ 2
and k(σnv)→∞ as n→∞, then

(1)

n∑
t=1

ωt−1−i1−···−ikzt,k = op(nk(σnv)).

(2)
1

nk(σnv)

n∑
t=1

|yt|δ
d−→ E|et|δ

1− ρ0

∫ 1

0

h(Wd(r))dr.

Proof : (1) Note that under the assumptions, for fixed k, zt,k is a mean zero, covariance
stationary and L2-NED of size −1/2, that is, zt,k satisfies all conditions for Theorem 4.1,

4.2 in Davidson and De Jong (2000). Therefore we have that n−1/2
∑n
t=1 zt,k

d−→W and

n−1/2
n∑
t=1

h(
xt
σnv

)zt,k−1
d−→
∫ 1

0

h(Wd(r))dW. (2.14)

From (2.14), we have that

1

nk(σnv)

n∑
t=1

ωt−1−i1−···−ik−1
zt,k−1 = op(1) +

1

nk(σnv)

n∑
t=1

u(xt)zt,k−1

= op(1) +
1√
n

(
1√
n

n∑
t=1

h(
xt
σnv

))

p−→ 0.

(2) By the same process used in the proof of Theorem 3 and (2.13), we have that

1

nk(σnv)

n∑
t=1

|yt|δ
d−→ E|et|δ

1− ρ0

∫ 1

0

h(Wd(r))dr.

�

Remark 2.1 Recall that if the assumption (C2) holds, then xt =
∑∞
j=0 θjvt−j , where

θj = Γ(d+j)
Γ(d)Γ(j+1) ∼

1
Γ(d)j

d−1 and xt is strictly stationary with
∑∞
j=0 θ

2
j < ∞ and

∑∞
j=0 θ

4
j <

∞, hence E(x2
t ) < ∞ and E(x4

t ) < ∞. (C1) with ρ = 1 is a special case of (C3) with
ψ0 = 1, ψk = 0 if k 6= 0. It is known (1 − L)−dηt =

∑∞
k=0 ψkηt−k with ψk ∼ (1/Γ(d))kd−1.

In order to
∑∞
k=0 k

1/2kd−1 <∞, the condition d < −1/2 is necessary. Thus (C4) is not the
case of (C3). In fact ξt in (C4) is not iid but L2-NED.

In comparison with the previous results of Theorem 2, we consider the following limiting
behavior of (xt) given by the assumption (C2) with E(v4

t ) <∞.

Theorem 2.5 If xt is defined by the assumption (C2) with E(v4
t ) < ∞, then the FCLT

holds for x2
t with −1/2 < d < −1/4.

1

σn

[nr]∑
t=1

(x2
t − E(x2

t ))
d−→ W,

where σ2
n = V ar(

∑n
t=1 x

2
t ).
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Proof : Define Et+mt−m(X) := E(X|σ(vt−m, · · · , vt, · · · , , vt+m)). Under the assumption (C2),
xt =

∑∞
j=1 θjvt−j , θj ∼ 1

Γ(d)j
d−1.

Note that

Et+mt−m(x2
t ) =

m∑
j=1

θ2
j v

2
t−j + 2

m−1∑
i=1

m∑
j=i+1

θiθjvt−ivt−j

+Et+mt−m(

∞∑
j=m+1

θ2
j v

2
t−j + 2

∞∑
i=1

∞∑
i<j,j=m+1

θiθjvt−ivt−j).

Using Minkowski inequality and Cauchy-Schwarz inequality yields that

‖x2
t − Et+mt−m(x2

t )‖2 ≤
∞∑

j=m+1

θ2
j‖v2

t−j − σ2
v‖2 + 2

∞∑
i=1

∑
i<j,j=m+1

θiθj‖vt−ivt−j‖2

≤ ‖v2
t − σ2

v‖2
∞∑

j=m+1

θ2
j + 2‖vt‖24(

m∑
i=1

∞∑
j=m+1

θiθj +

∞∑
i=m+1

∞∑
j=i+1

θiθj).

Now,

∞∑
j=m+1

θ2
j ∼

1

Γ(d)

∫ ∞
m+1

x2(d−1)dx = O(m2d−1).

Similarly, we have that

m∑
i=1

∞∑
j=m+1

θiθj = O(m2d),

and hence

‖x2
t − Et+mt−m(x2

t )‖2 ≤ O(m2d).

Therefore, {x2
t} is L2-NED of size −1/2 if −1/2 < d < −1/4.

Next, by simple calculation,
∑∞
h=1 Cov(x2

t , x
2
t+h) = (µ4−µ2

2)(
∑∞
i=0 θ

2
i θ

2
h+i) + 4µ2

2

∑
i<j θi

θjθh+iθh+j . Adopt the integral approximation to get
∑∞
h=1 Cov(x2

t , x
2
t+h) < ∞, which im-

plies that n−1V ar(
∑n
t=1 x

2
t ) converges as n→∞. Thus, {x2

t −E(x2
t )} satisfies the assump-

tion of Theorem 1.2 in Davidson (2002), and the conclusion follows. �

If ci = gj = 0 ∀i, j(i = 1, · · · , p, j = 1, · · · , q), u(x) = ω + πx2, and δ = 2 in (1.2) and xt
satisfies the condition in Theorem 5, then we have that

1

σn

[nr]∑
t=1

(y2
t − E(y2

t )) =
1

σn

[nr]∑
t=1

π(e2
t−1 − 1)(x2

t−1 − E(x2
t−1))

+
1

σn

[nr]∑
t=1

π(x2
t−1 − E(x2

t−1))

d−→ πW. �
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As an example, we consider the following GARCH(p, q)-X model defined by

yt = σtet, (2.15)

σ2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j + πx2

t−1, (2.16)

where ω > 0, αi, βj ≥ 0(i = 1, · · · , p, j = 1, · · · , q), π ≥ 0 are constants and (et) is iid with
mean zero. Here ci(et) := αie

2
t + βi, ωt := ω + πx2

t . Assume that ρ0 =
∑p
j=1(αj + βj) < 1

and E(ci(e0))l <∞ for some l > 2.
GARCH(1,1)-X model with αi = βj = 0, i ≥ 2, j ≥ 2 in (2.16) is considered by Han

(2015) and various asymptotics are proved. Note that u(x) = πx2 is a H-regular function
with the asymptotic order k(λ) = πλ2 and the limit homogenous function h(x) = x2. If
ci(·) = 0, gj(·) = 0 ∀i, j, δ = 2 and xt is generated by the assumption (C3), then the process
generated by (1.1) and (1.2) is the model studied in Park (2002). Asymptotic behavior of the
sample variance, autocorrelation, kurtosis, and leptokurtosis are examined under the proper
condition given to u(·).

Apply the previous results to GARCH(p, q)-X model of (2.15) and (2.16) to obtain that,
for example, under the assumption (C2),

1

n

n∑
t=1

y2
t

p−→ 1

1− δ
(ω + πE(x2

t ))

and under the assumption (C3),

1

nσ2
nξ

n∑
t=1

y2
t

d−→ π

1− δ

∫ 1

0

(Wd(r))
2dr.

References

Atsmegiorgis, C., Kim, J. and Yoon, S. (2016). The GARCH-GPD in market risks modeling: An empirical
exposition on KOSPI. Journal of the Korean data & Information Science Society, 27, 1661-1671.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics,
31, 307-321.

Brenner, R., Harjes, R. and Kroner, K. (1996). Another look at models of the short-term interest rate.
Journal of Financial and Quantitative Analysis, 31, 85-107.

Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semi-
parametric time series processes. Journal of Econometrics, 105, 243-269.

Davidson, J. and De Jong, R. M. (2000). The functional central limit theorem and weak convergence to
stochastic integrals II: Fractionally integrated processes. Econometrics Theory, 16, 643-666.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of variance of U.K. infla-
tion. Econometrica, 50, 987-1008.

Engle, R. F. and Patton, A. (2001). What good is a volatility models?. Quantitative Finance, 1, 237-245.
Fleming, T., Kirby, C. and Ostdiek, B. (2008). The specification of GARCH models with stochastic covari-

ates. Journal of Futures Markets, 28, 911-934.
Giraitis, L., Leipus, R. and Surgailis, D. (2007). Recent advances in ARCH modelling. In Long Memory in

Economics (pp.3-38). Berlin, Springer.
Han, H. (2015). Asymptotic properties of GARCH-X processes. Journal of Financial Econometrics, 13,

188-221.



Some limiting properties for GARCH(p, q)-X processes 707

Han, H. and Park, J. Y. (2008). Time series properties of ARCH processes with persistent covariates. Journal
of Econometrics, 146, 275-292.

Hwang, S. and Satchell, S. (2005). GARCH model with cross-sectional volatility: GARCH-X models. Applied
Financial Economics, 15, 203-216.

Jeong, S. H. and Lee, T. W. (2017). A numerical study on option pricing based on GARCH models with
normal mixture errors. Journal of the Korean data & Information Science Society, 28, 251-260.

Lee, O. (2014). Functional central limit theorems for augmented GARCH(p,q) and FIGARCH processes.
Journal of the Korean Statistical Society, 43, 393-401.

Park, J. (2002). Nonstationary nonlinear heteroscedasticity. Journal of Econometrics, 110, 383-415.
Park, J. and Phillips, P. (1999). Asymptotics for nonlinear transformations of integrated time series. Econo-

metric Theory, 15, 269-298.
Park, J. and Phillips, P. (2001). Nonlinear regressions with integrated time series. Econometrica, 69, 117-

161.
Phillips, P. and Solo, V. (1992). Asymptotics for linear processes. The Annals of Statistics, 20, 971-1001.


