• Title/Summary/Keyword: G-homotopy

Search Result 52, Processing Time 0.03 seconds

EQUIVARIANT HOMOTOPY EQUIVALENCES AND A FORGETFUL MAP

  • Tsukiyama, Kouzou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.649-654
    • /
    • 1999
  • We consider the forgetful map from the group of equivariant self equivalences to the group of non-equivariant self equivalences. A sufficient condition for this forgetful map being a monomorphism is obtained. Several examples are given.

  • PDF

On Homotopy Equivalence Of Nonnilpotent Spaces And Its Applications

  • Han, Sang-eon
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.349-355
    • /
    • 2000
  • In this paper we generalize the Whitehead theorem which says that a homology equivalence implies a homotopy equivalence for nilpotent spaces. We make some theorems on a homotopy equivalence of non-nilpotent spaces, e.g., the solvable space or space satisfying the condition (T**) or space X with $\pi$1(X) Engel, or locally nilpotent space with some properties. Furthermore we find some conditions that the Wall invariant will be trivial.

  • PDF

REMARKS ON THE REIDEMEISTER NUMBER OF A G-MAP

  • Cho, Sung Ki;Kweon, Dae Seop
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • For a G-map ${\phi}:X{\rightarrow}X$, we define and characterize the Reidemeister number $R_G({\phi})$ of ${\phi}$. Also, we prove that $R_G({\phi})$ is a G-homotopy invariance and we obtain a lower bound of $R_G({\phi})$.

  • PDF

Note on the Codimension Two Splitting Problem

  • Matsumoto, Yukio
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.563-589
    • /
    • 2019
  • Let W and V be manifolds of dimension m + 2, M a locally flat submanifold of V whose dimension is m. Let $f:W{\rightarrow}V$ be a homotopy equivalence. The problem we study in this paper is the following: When is f homotopic to another homotopy equivalence $g:W{\rightarrow}V$ such that g is transverse regular along M and such that $g{\mid}g^{-1}(M):g^{-1}(M){\rightarrow}M$ is a simple homotopy equivalence? $L{\acute{o}}pez$ de Medrano (1970) called this problem the weak h-regularity problem. We solve this problem applying the codimension two surgery theory developed by the author (1973). We will work in higher dimensions, assuming that $$m{\geq_-}5$$.

G(f)-SEQUENCES AND FIBRATIONS

  • Woo, Moo-Ha
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.709-715
    • /
    • 1997
  • For a fibration (E,B,p) with fiber F and a fiber map f, we show that if the inclusion $i : F \to E$ has a left homotopy inverse, then $G^f_n(E,F)$ is isomorphic to $G^f_n(F,E) \oplus \pi_n(B)$. In particular, by taking f as the identity map on E we have $G_n(E,F)$ is isomorphic to $G_n(F) \oplus \pi_n(B)$.

  • PDF

A RELATIVE NAIELSEN COINCIDENCE NUMBER FOR THE COMPLEMENT, I

  • Lee, Seoung-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.709-716
    • /
    • 1996
  • Nielsen coincidence theory is concerned with the determinatin of a lower bound of the minimal number MC[f,g] of coincidence points for all maps in the homotopy class of a given map (f,g) : X $\to$ Y. The Nielsen Nielsen number $N_R(f,g)$ (similar to [9]) is introduced in [3], which is a lower bound for the number of coincidence points in the relative homotopy class of (f,g) and $N_R(f,g) \geq N(f,g)$.

  • PDF

CERTAIN GENERALIZATIONS OF G-SEQUENCES AND THEIR EXACTNESS

  • Lee, Kee-Young;Woo, Moo-Ha;Zhao, Xuezhi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2008
  • In this paper, we generalize the Gottlieb groups and the related G-sequence of those groups, and present some sufficient conditions to ensure the exactness or non-exactness of G-sequences at some terms. We also give some applications of the exactness or non-exactness of G-sequences. Especially, we show that the non-exactness of G-sequences implies the non-triviality of homotopy groups of some function spaces.

V-SEMICYCLIC MAPS AND FUNCTION SPACES

  • Yoon, Yeon Soo;Yu, Jung Ok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 1996
  • For any map $v:X{\rightarrow}Y$, the generalized Gottlieb set $G({\Sigma}A;X,v,Y)$ with respect to v is a subgroup of $[{\Sigma}A,Y]$. If $v:X{\rightarrow}Y$ has a left homotopy inverse $u:X{\rightarrow}Y$, then for any $f{\in}G({\Sigma}A;X,v,Y)$, $g{\in}G({\Sigma}A;X,u,Y)$, the function spaces $L({\Sigma}A,X;uf)$ and $L({\Sigma}A,X;g)$ have the same homotopy type.

  • PDF

AN EXTENSION OF GOTTLIEB GROUPS

  • Lee, Kee-Young;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.653-659
    • /
    • 1997
  • In this paper, we extend the Gottlieb groups of a space to the Gottlieb groups of a map and show some properties of those groups. Especially, We show the 2nd Gottlieb group of a map is contained in the center of the homotopy group of the map and show $G_n(F) = \pi_n(f)$ for an H-map f between H-spaces. We also show the Gottlieb subgroups $G_n(A), G_n(X) and G_n(f)$ make a sequence if the map $f : A \to X$ has a right homotopy inverse.

  • PDF