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ON HOMOTOPY EQUIVALENCE OF
NONNILPOTENT SPACES AND ITS APPLICATIONS

SANG-EON HAN

ABSTRACT. In this paper we generalize tt.e Whitehead theorem which
says that a homology equivalence implies a homotopy equivalence for
nilpotent spaces. We make some theorems on a homotopy equivalence
of non-nilpotent spaces, e.g., the solvable space or space satisfying the
condition (T™*) or space X with 7;(X) Engel, or locally nilpotent
space with some properties. Furthermcre we find some conditions
that the Wall invariant will be trivial.

1. Introduction

For nilpotent spaces ([1], p.58) X,Y we know that a homology equiva-
lence between X and Y makes a homotopy equivalence ([2, 3]). But there
is not much information on the relations between homology equivalence
and homotopy equivalence for non-nilpotent spaces.

In this paper, we make the homotopy equivalence of non-nilpotent
spaces clear with relation to the homology equivalence. The spaces,
e.g., the solvable space or locally nilpotent space under some conditions
are studied (see Theorem 3.1). We work in the category of topological
spaces having the homotopy type of conaected pointed C'W-complexes
with base point and denote it by T

2. Some properties of the non-nilpotent space and condition
(1)

In this section, we study a locally nilpotent space and its properties
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with respect to conditions (T*) and (T™*) respectively.

We recall that a locally nilpotent group is the group whose all finitely
generated subgroups are nilpotent groups ([10]).

And let Ty be the category of nilpotent spaces and continuous maps.

Now we recall the concept of a locally nilpotent space as follows:

A space X (€ T) is said to be a locally nilpotent space ([5, 6]) if

(1) m(X) is a locally nilpotent group, and
(2) the action m(X) X m,(X) — m,(X) is nilpotent for all n > 2
([1D)-

And the category of locally nilpotent spaces and continuous maps is
denoted by T, n.

We know that the category Tn is a full subcategory of T7,n. We say
that a space X (€ T) satisfies the condition (T™) ([5]) if for all g,t €
m1(X) either glg, m1(X)] = ¢[t, 1 (X)] or glg, m (X)] N ¢[E, m1(X)] = ¢.

Now we define an effective concept with respect to the locally nilpotent
space.

We say that X satisfies the condition (T**) ([5, 6)) if for all g(# 1) €
m1(X), then g ¢ [g, m(X)].

Since the group [g, 71(X)] is a normal subgroup of 71 (X), the condi-
tion (7T™*) has a homotopy invariant property.

Let’s say that a group action G on H is called solvable if there exists
a finite chain: H = Hy D Hy D H3 D --- D H; D --- D H,, = {e} such
that for each j

(1) Hj is closed under the action of G, and
(2) Hj+1 is normal in H; and H;/H;,, is abelian.

DEFINITION 2.1. We define that a space X (€ T') is solvable if

(1) m(X) is solvable, and
(2) there is the solvable action 71 (X) x 7, (X) — 7, (X) foralln > 2.

Even though the group 7, (X) for n > 2 is commutative, the condition
(2) of definition 2.1 is meaningful with respect to the closed property of
the solvable action.

And the category of solvable spaces and continuous maps is denoted
by Ts. We get the following easily.
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THEOREM 2.2. The category Ts has the finite product property, i.e.,
for set {X,|a € M : finite}, X, € Ts for any o if and only if [] ,c ps Xa €
Ts.

And the category Ty is a full subcategory of Tg.

In a fibration Fy — E J, B, if the reduced homology group H, (Fy) =
0, * > 0 we recall that f is an acyclic map, where F is a homotopy
fiber of f.

In a fibration F — E % B, for any path o : I — B and singular
g-complex g : A? — p~1(c(0)) determines a map G : A x I — E over
aopry: AYx I — I — B and extending Gy =g : A7x{ 0 } — E by the
homotopy lifting property, where pro means a second projection. If aisa
loop, then Gy : A%x {1} — E is a g-simplex in p~!(a(1)) = p~*((0)).
Now elements of 71 (B) operate on Hg(F'). Thus we have the following

8]-

DEFINITION 2.3. A fibration FF — E — B is said to be quasi-
nilpotent if the action of m;(B) on H,(F') is nilpotent, n > 0. Fur-
thermore the fibration F — E — B is strong quasi-nilpotent if it is
quasi-nilpotent and if, in addition, m (B) is nilpotent.

We recall that a group G satisfies the maximal condition if it has no
infinite strictly increasing chain of subgroups ([10]).

We recall the Engel group G ([10]), i.e., the group which has a relation
of the form [--- [[z,y}, 9], ,¥] == [z, %,¥. - ,y] = [Z,ny] = 1, where
[z,y] := 271y~ lzy, the commutator of z and y. The number of entries
of y’s in the formula above depends on both z, y(€ G). We do not need
to bound it uniformly.

3. Main Theorems
Let’s check the homotopy equivalence of the various cases:

THEOREM 3.1. If f : X — Y is an acyclic map and X satisfies one
of the followings:
(1) X(E TS)’
(2) X is the space satisfying condition (T™*) or (T**) with m(X)
finite,
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(3) X (€ Trn) such that m(X) is torsion-free with all proper sub-
groups of m1(X) nilpotent,

(4) X such that m(X) is an Engel and whether 7 (X) is finite or
71(X) is infinite with the maximal condition,

then f is a homotopy equivalence.

PRrROOF. By the classical homotopy exact sequence of a fibration:

Fr - X ERN Y, we have an epimorphism 71 (f). And we get H (F)
trivial from an acyclic map property of f, i.e., m1(Fy) is a perfect group.
Furthermore the homomorphic image of a perfect group is also perfect.
Hence m(Y) = —E;Jl(éxl) where Pmy(X) means a perfect normal subgroup
of m1(X). Now let’s check each cases

For case (1): since X € T, by definition of the solvability of the space
X we have

(m (X)) = [(my (X)) 7Y, (m (X))

trivial for some n where [,] means the commutator subgroup. Since we
get

P(my(X)) = (P(m(X))™ < (m(X))™

trivial, P(71(X)) is finally zero.

For case (2): from the fact that X satisfies the condition (T**) with
m1(X) finite we get the space X as a nilpotent space ([5, Lemma 3.1]).

Next, if X satisfies the condition (7*) then we know that X also sat-
isfies the condition (T**). If not, g € [g, 71 (X)] for some g(# 1) € m1(X).
Then g~* € [g,m1(X)] and 1 € g[g, m1(X)]. Thus g[g, m1(X)] N 1[1, 71 (X)]
# ¢. Since X satisfies the condition (T*), glg,m1(X)] = 1. Since
g(# 1) € g[g,m(X)], we have a contradiction. Thus 7 (X) is nilpo-
tent even for the case X satisfying the condition (7).

For case (3): for X(€ Trn) if m1(X) is torsion-free with all proper
subgroups of m;(X) nilpotent then X € T ([11]).

For case (4): if m1(X) is finite with 71(X) an Engel group we get
71(X) nilpotent and even when 1(X) is infinite. Furthermore m; (X)
has the maximal condition and we get a nilpotent group m1(X). Thus
Pr1(X) is trivial.
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With any of the four cases above, we have 71(f) as an isomorphism.
Thus f is a homotopy equivalence from the fact that f is an acyclic map
and by the classical Whitehead theorem. |

COROLLARY 3.2. If f : X — Y is a quasi-nilpotent homology equiva-
lence and the space X satisfies one of the cases (1) ~ (4) from Theorem
3.1, then f is a homotopy equivalence.

PROOF. A quasi-nilpotent homology equivalence is equivalent to an
acylic map. O

REMARK. For the case (1) or (2) frora Theorem 3.1, even though
X € Ts, X need not satisfy the condition (T™*). For example, BSj3 is
a solvable space but BS3 does not satisfy the condition (I"*) where B
means Milnor’s classifying space and S3 means symmetric group.

4. Applications to the wall invariants

We found some properties of the Wall invariant for the space satisfying
the condition (T™*) ([7]).

For a space X, we consider the group ring Zm; (X). Let Ko(Zm1 (X))
denote the Grothendleck group of the group ring Zm (X).

A space is said to be a type FP if the s.ngular chain complex C; X of
the universal covering X of X is chain homotopy equivalent, (as Zm; (X)-
complex) to a finite projective complex, i.e., a complex C; with C; =0
for i big enough, and with each C; a finitely generated projective Zmq (X)
module.

If X is of type F P, the Wall obstruction w(X) is defined by

w(X) = £(-1)'[Ci] € Ko(Zm1(X))

where C; is a finite projective complex equivalent to C; X, and [C;] de-
notes the class of C; in the projective class group Ko(Zm(X)). It is
evident that w(X) is independent of the choice of C:.

Furthermore, a space X of type FP is dominated by a finite complex
if and only if 71 (X) is finitely presented.

We know the fact that: if m;(X) is nilpotent then X is type F'P if
and only if X is finitely dominated ([9]).
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LEMMA 4.1 ([8, Theorem 2.1]). Let F -2+ E — B be a fibration
with F a finitely dominated complex and B a finite complex. Then E
is a finitely dominated complex and w(E) = j,w(F)x(B), where j :
Ko(Zny(F)) — Ko(Zm1(F)) is a group homomorphism and x means the
Euler characteristic.

THEOREM 4.2. In a fibration F —+ E — B with F a finitely domi-
nated space if the finite space B(€ Ty, n) satisfies one of the following:
(1) m1(B)(# 0) is finite,
(2) m1(B) is torsion-free with all proper subgroups of m1(X) nilpo-
tent,

then w(E) = 0.

PROOF. For case (1), we know that B satisfies the condition (T**)([5,
6]) and furthermore from the finiteness of 71(B) we get B as a nilpotent
space.

For case (2), B is also nilpotent from (3) in Theorem 3.1.

Thus in any cases above we have x(B) = 0 ([4]). Finally we have
w(E) =0 from Lemma 4.1. O
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