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Abstract. Let W and V be manifolds of dimension m + 2, M a locally flat subman-

ifold of V whose dimension is m. Let f : W → V be a homotopy equivalence. The

problem we study in this paper is the following: When is f homotopic to another homo-

topy equivalence g : W → V such that g is transverse regular along M and such that

g|g−1(M) : g−1(M) → M is a simple homotopy equivalence? López de Medrano (1970)

called this problem the weak h-regularity problem. We solve this problem applying the

codimension two surgery theory developed by the author (1973). We will work in higher

dimensions, assuming that m = 5.

1. Introduction

In this paper, we study the weak h-regularity problem in the sense of López de
Medrano [14], or the codimension two splitting problem, whose precise formulation
will be given in §2. The main results will clarify the role of relatively non-singular
Hermitian K-groups [3, 18] in the codimension two splitting problem. This type of
K-groups (called P -groups in our theory) are defined over a surjective ring homo-
morphism between (not necessarily commutative) rings

A→ B

and are, roughly speaking, the Witt groups of relatively non-singular Hermitian
forms over A→ B, meaning that they are defined over A and become non-singular
over B. For example, P -groups over Z[t, t−1]→ Z are isomorphic1 to Levine’s knot
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1A purely algebraic proof of these isomorphisms is given in [21].
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cobordism groups [11]. See [17]. Cappell and Shaneson [5, 6], defined similar but
slightly different Hermitian K-groups (called Γ-groups by them), and using these
groups they studied the codimension two placement problems extensively. However,
in the author’s opinion, our formulation is simpler than theirs. For example, we can
give a unique element in our P -group as the obstruction to codimension two splitting
(see Theorem 2.5 below), while in Cappell and Shaneson’s theory, the obstruction
to the same splitting problem is given in two steps involving two different (but
mutually related) groups (see [4], [5, §8], [6, p.438]).

Relatively non-singular Hermitian K-theory is an interesting region of math-
ematics, but compared to the usual (non-singular) Hermitian K-theory2 (cf.
[1, 25, 27, 31, 32]), it is still under-developed. Actually, after Ranicki’s remark-
able work (see [28, §7.8 and §7.9], [29]), the relationship between our P -groups and
Cappell-Shaneson’s Γ-groups is still unclear. In Kato’s problem list [9], C. T. C.
Wall proposed the problem of computing these groups [9, Problem 6.2, p.426].

Another interesting problem is to find a Künneth type formula for relatively
non-singular Hermitian K-groups. The problem is to find the formula describing
the K-groups over A ⊗ Λ → B ⊗ Λ in terms of K-groups over A → B, where
Λ = Z[s, s−1]. It is known that Shaneson’s type of Künneth formula [30] cannot be
expected here. See [19].

There should be close relationships between relatively non-singular Hermitian
K-theory and algebraic number theory. In fact, Milnor’s and Levine’s papers [12, 24]
seem to suggest certain connections of it to the class field theory.

Axiomatic foundations of relatively non-singular Hermitian K-groups are found
in [3, 18, 28, 29]. See also [21].

For geometric applications of our theory, see [17, 19, 20, 22].
Recently there was remarkable progress related to [19] concerning spineless 4-

manifolds. Our example constructed in [19] was a compact PL-spineless 4-manifold
homotopy equivalent to a 2-torus T 2. In 2018, using Heegaad Floer d invariants,
A. S. Levine and T. Lidman [13] constructed compact PL-spineless 4-manifolds
homotopy equivalent to a 2-sphere S2, and in 2019, H. J. Kim and D. Ruberman [10]
proved that some of the Levine-Lidman manifolds admit tame topological spines.

We remark here that M. H. Freedman [7] independently discovered the same
Seifert forms as ours (see §5 and Appendix of the present paper). Applying his codi-
mension two surgery theory, he found higher dimensional counterexamples to the
generalized Thom conjecture concerning the Betti numbers of smooth hypersurfaces
in the complex projective spaces [7].

The present paper is based on the author’s old note [16], which has been un-
published for more than forty years. The author hopes that the note would be still
worth publishing, but an apology for such a long delay would be necessary. An
explanation is given in Acknowledgments and Postscript at the end of this
paper.

2The usual Hermitian K-theory is a special case of relatively non-singular Hermitian
K-theory, where the basic surjection A→ B is the identity id : A→ A.
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The (almost) verbatim reproduction of the old note [16] starts in the next
paragraph after ∫ ∫ ∫ . In the reproduction, we have updated the references3 . (In
fact, in the old note, even the references [8] and [17] were cited as “to appear”.
The papers [5], [6] were not available even in the preprint form. At that time, the
only papers of Cappell and Shaneson that were available to the author were [4] in
preprint form.) Also we have added some footnotes.

Now the reproduction starts.

∫ ∫ ∫

In our previous paper [17], we introduced ambient surgery obstruction groups
Pm(E) in codimension two. There we introduced them in order to describe the
obstruction to finding locally flat spines of (m + 2)-manifolds which are simple
homotopy equivalent to a Poincaré complex of formal dimension m.

The groups Pm(E) work, however, as the obstruction groups for the weak h-
regularity problem in the sense of López de Medrano [14] as well (i.e. the splitting
problem in codimension two). The purpose of this note is to give a detailed proof
of it.

Cappell and Shaneson [4] treated the same problem independently from ho-
mology surgery point of view. They state their obstruction in terms of Γ-groups
introduced by them. Naturally their Γ-groups and our P -groups seem to be related
to each other very closely. The relationship will be discussed elsewhere.

2. Definitions and Statement of Results

Throughout the paper, we will work in the PL-category4 . All manifolds are
compact connected and oriented. All submanifolds are locally flat unless the con-
trary is stated. If a submanifold M of W has a boundary, we always assume that
it is properly embedded, i.e., j−1(∂W ) = ∂M , where j : M →W is the inclusion.

The dimension of a manifold is indicated by a superscript.

Definition 2.1.([8, 17]) Let Mm be a submanifold of Wm+2 with a regular neigh-
borhood N . (If ∂M 6= ∅, N is assumed so that N ∩ ∂W is a regular neighborhood
of ∂M in ∂W .) The closed complement E = W −N is called the exterior, E ∩N
is called the frontier of N and is denoted by FN . If πi(E,FN) = 0 for i 5 k, Mm

is said to be exterior k-connected.

Suppose Mm is exterior 2-connected in Wm+2, then we have isomorphisms

π1(FN)
∼=→ π1(E) and π1(M)

∼=→ π1(N)
∼=→ π1(W ). The proof is not difficult. (See

[17, Lemma 1.3].) The former group is denoted by π, and the latter by π′. Since

3The original references in [16] were [4, 8, 14, 15, 17, 23, 26, 32].
4All of our results, however, remain valid in the smooth or the topological categories.

(cf. [32])
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FN →M is an S1-bundle, there is an exact sequence:

π2(M)→ π1(S1)→ π1(FN)→ π1(M)→ 1.

From this, we have the exact sequence

1→ C → π → π′ → 1,

where C = Coker(π2(M) → π1(S1)), and C is a cyclic group in the center of π
[17, Lemma 1.4]. We can specify a generator t of C. The generator t is canonically
determined by the orientations of Mm and Wm+2 [17, Lemma 1.4].

Definition 2.2.([17]) The above exact sequence is denoted by E, and is said to be
associated with the exterior 2-connected manifold pair (Wm+2,Mm).

Let P , Q be two manifolds, K a submanifold of Q, Let h : P → Q be a
continuous map.

Definition 2.3.([14]) The map h is weakly h-regular along K if

(1) h is t-regular along K and

(2) h|h−1(K) : h−1(K)→ K is a simple homotopy equivalence.

Now we can state our problem.
Suppose that we are given a diagram of weak h-regularity problem (∗) satisfying

the following conditions:

(∗) f : (Wm+2, ∂W )→ (V m+2, ∂V )
∪

(Mm, ∂M).

(C.1) f |W : W → V is a (not necessarily simple) homotopy equivalence.

(C.2) f |∂W : ∂W → ∂V is weakly h-regular along ∂M .

(C.3) f |∂W−f−1(∂M) : ∂W−f−1(∂M)→ ∂V −∂M is a Λ′-homology equivalence,
where Λ′ = Z[π′] with π′ = π1(W ). The Λ′-homology group of ∂W−f−1(∂M)

means the integral homology of π−1(∂W − f−1(∂M)), where π : W̃ → W is
the universal covering.

(C.4) M is exterior 2-connected in V .

Problem 2.4.(The weak h-regularity problem (W.H.-R.P.)) When is f homotopic
(rel. the boundary) to g : (W,∂W )→ (V, ∂V ) which is weakly h-regular along M?

Our purpose is to prove the following

Theorem 2.5. There is a unique obstruction element γ(f) in Pm(E) which vanishes
if and only if f is homotopic (rel. ∂W ) to such a map g (m = 5). Here E is the
short exact sequence associated with (V m+2,Mm).
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For the algebraic definition of the group Pm(E), see §5.1. Since P2n+1(E) ∼=
L2n+1(π′) ([17], the right-hand side being the Wall group [32]), we have

Corollary 2.6. If m = odd = 5, the obstruction is an element of the odd-
dimensional Wall group Lm(π′).

This is independently obtained by Cappell and Shaneson [4]. The obstruction
in this note and the one in our previous paper [17] are related as follows.

Theorem 2.7.(Restatement of Theorem 5.1 and Lemmas 5.3 and 5.4 of the present
paper)

(1) Suppose we are given a diagram (∗) of the weak h-regularity problem. Let
T denote a tubular neighborhood of M2n in V 2n+2. Then f is homotopic
(rel. ∂W ) to a map g which is t-regular along FT with g−1(T )→ T a simple
homotopy equivalence.

(2) Clearly g−1(T ) is a Poincaré thickening in the sense of [17], and the ob-
struction η(g−1(T )) to finding a locally flat spine is defined in P2n(E). The
obstruction γ(f) to weak h-regularity is defined to be η(g−1(T )).

In §6, we will prove the following “periodicity theorem” and the “invariance
theorem under L-equivalence”.

Theorem 2.8.(Restatement of Theorem 6.1) Let idCP 2
× f be the diagram

CP 2 × (Wm+2, ∂W )
id×f→ CP 2 × (V m+2, ∂V )

∪
CP 2 × (Mm, ∂M),

then we have

γ(idCP 2
× f) = ρ(γ(f)),

where ρ : Pm(E)→ Pm+4(E) is the algebraic periodicity isomorphism.

Theorem 2.9.(Restatement of Theorem 6.2) If Mm
1 and Mm

2 are L-equivalent
(rel. ∂), then γM1

(f) = γM2
(f). (The notation γM (f) is used to emphasize the

submanifold M .)

3. Surgery below the Middle Dimension

Suppose the diagram (∗) (on the previous page) is given. In this section we will
perform surgery on f−1(M) below the middle dimension. The middle dimension
will be studied in §4 and §5. In what follows, whenever we consider the preimage
f−1(M), we are assuming that f is t-regular along M .

We will introduce the following notation:
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Lm = f−1(Mm),
N ; a regular neighborhood of Lm in Wm+2,
E; the exterior of N ,
FN ; the frontier of N ,
T ; a regular neighborhood of Mm in V m+2, (We assume N = f−1(T ).)
F ; the exterior of T ,

FT ; the frontier of T , and Φ denotes the quadruple


E −−−−→ Fx x
FN −−−−→ FT

.

Let α be an element of πi+2(Φ). Suppose ∂α ∈ πi+1(E,FN) is represented by
a normally embedded (i+ 1)-handle H in W attached to L : (See [8])

H = Di+1 ×Dm−i ⊂Wm+2,
H ∩ Lm = ∂Di+1 ×Dm−i.

(∂α denotes the image of α under the homomorphism ∂ : πi+2(Φ)→ πi+1(E,FN).)
Then we have

Lemma 3.1. There is a homotopy (rel. boundary) from f to f ′ which satisfies
f ′−1(M) = (L− Int(∂Di+1×Dm−i))∪Di+1× ∂Dm−i. In other words, the surgery
can be performed by a homotopy of f .

Although the proof is not difficult, it is long and tedious, so we omit it. An
analogous argument is done in [15].

3.1. To make Lm = f−1(Mm) Exterior 2-connected.

Suppose m = 4. Since πi(F,FT ) = 0 (i 5 2) (this is our hypothesis (C.4)), we
have

∂ : π2(Φ)
∼=→ π1(E,FN), and

∂ : π3(Φ)→ π2(E,FN)→ 0.

(These are obtained by the homotopy sequence of quadruple Φ.)
Thus any element in πi(E,FN)(i 5 2) is of the form ∂α, where α ∈ πi+1(Φ),

and by dimension reasons, ∂α can be represented by a normally embedded i-handle.
Then Lemma 3.1 applies.

The effect of this surgery is to kill ∂α. Thus by successive surgeries, one can
kill the whole sets πi(E,FN) (i 5 2). For a detailed proof, see [8].

Hereafter we will assume that f−1(M) = L is exterior 2-connected and that the
following diagram holds
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π1(E) −−−−→ π1(F )x∼= x∼= }
π

π1(FN) −−−−→ π1(FT )y y
(π1(W )

∼=←−−−− )π1(L)
∼=−−−−→ π1(M)

}
π′ .

3.2. Surgery below the Middle Dimension.

Since f : Wm+2 → V m+2 is a homotopy equivalence, the homomorphisms

l(f |N)∗ : H∗(N ; Λ′)→ H∗(T ; Λ′), (Λ′ = Z[π′])

(f |E)∗ : H∗(E; Λ)→ H∗(F ; Λ), (Λ = Z[π])

(f |FN)∗ : H∗(FN ; Λ)→ H∗(FT ; Λ), etc.

are surjective.
The corresponding kernels are denoted by K∗(N ; Λ′), K∗(E; Λ), K∗(FN ; Λ),

etc. (The meaning of the Λ-homology: For example, H∗(E; Λ) denotes the integral

homology of Ẽ, the universal covering of E. Recall π1(E) ∼= π. Similarly H∗(N ; Λ′),

the Λ′-homology group, is defined by the integral homology of Ñ , the universal
covering of N , where π′ = π1(N).)

Assume 3 5 i+ 1 5
[
m
2

]
, and suppose that an element of πi+1(E,FN) is of the

form ∂α, where α ∈ πi+2(Φ), and is represented by a normally embedded handle H.
Then Lemma 3.1 applies. f is deformed by a homotopy (rel. ∂) to f ′ with f ′−1(M)
a new submaifold which is obtained by the surgery along H. The corresponding
new exterior (or frontier) is denoted by E′ (or FN ′). Then we have,

Lemma 3.2.

πj(E
′,FN ′) = 0 (j 5 2)

Kj(E
′,FN ′; Λ) ∼= Kj(E,FN ; Λ) (j < i+ 1)

Ki+1(E′,FN ′; Λ) ∼= Ki+1(E,FN ; Λ)/Λ(∂α).

If K∗ is replaced by H∗, this is a standard result in codimension two surgery the-
ory (cf. [8, 17]). The “standard proof” can apply to Lemma 3.2 under appropriate
modifications.

Denote the restrictions of f , f |E : E → F , f |FN : FN → FT and f |L : L→M
by fE , fF, fL respectively.

The purpose of this paragraph is to prove the following:

Theorem 3.3. If m = 4, we can perform ambient surgery on Lm = f−1(Mm) via
homotopy (rel. ∂) of f to obtain a new map (again denoted by f) so that the new
submanifold has the following properties
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(i) Lm = f−1(Mm) remains exterior 2-connected,,

(ii) πi(Φ) = 0 (i 5
[
m
2

]
+ 1),

(iii) πi(fE) = 0 (i 5
[
m
2

]
+ 1),

(iv) πi(fF) = 0 (i 5
[
m
2

]
) and

(v) πi(fL) = 0 (i 5
[
m
2

]
).

The next lemma is useful in proving Theorem 3.3.

Lemma 3.4. Let Lm = f−1(Mm) be exterior 2-connected. Let ` be an integer = 1.
Suppose

(a) πi(Φ) = 0 for i 5 `+ 2,

(b) πi(fE) = 0 for i 5 ` and

(c) πi(fL) = 0 for i 5 `.

Then it follows that

(d) πi(fE) = 0 for i 5 `+ 2,

(e) πi(fF) = 0 for i 5 `+ 1 and

(f) πi(fL) = 0 for i 5 `+ 1.

Proof. From the homotopy exact sequence of Φ, we have

(3.1) πi(fF)
∼=→ πi(fE) for i 5 `+ 1.

This implies

(3.2) πi(fF) = 0 for i 5 `, by (b).

Let $0 : Ŵ → W (or $1 : V̂ → V ) be the universal covering space of W (or

V ), and let Ê = $0
−1(E), F̂N = $0

−1(FN), F̂ = $−1
1 (F ) and F̂T = $−1

1 (FT ).
Their fundamental groups are isomorphic to the cyclic group C with generator t.

Let N̂ = $−1
0 (N), L̂ = $−1

0 (L), T̂ = $−1
1 (T ) and M̂ = $−1

1 (M). These are
connected and simply-connected.

Let f̂F : F̂N → F̂T , f̂E : Ê → F̂ , f̂L : L̂ → M̂ be the liftings of fF, fE , fL,
respectively.

By (3.2) and hypothesis (b) together with the Hurewicz theorem, we have

(3.3)

{
H`+1(f̂E) ∼= π`+1(f̂E)/(1− t)π`+1(f̂E), and

H`+1(f̂F) ∼= π`+1(f̂F)/(1− t)π`+1(f̂F).
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Here (1− t) is an element of Z[C], the integral group-ring of C, and we consider

π`+1(f̂E) and π`+1(f̂F) as Z[C]-modules.

Now note that F̂N (resp. F̂T ) is the total space of an S1-bundle over L̂ (resp.

M̂), so the homomorphism πi(F̂N) → πi(L̂) (resp. πi(F̂T ) → πi(M̂)) induced by
the projection is isomorphism for i = 3, and injective for i = 2.

From this and the homotopy exact sequences of f̂F : F̂N → F̂T and f̂L : L̂→ M̂ ,
we have

(3.4)

 πi(f̂F)→ πi(f̂L) is injective for i = 2.
If i = 3, this is an isomorphism,
where the map is induced by the projection of S1-bundles.

The generator t of C is represented by a fiber of the S1-bundle, thus t acts trivially
on πi(f̂L). Therefore, by (3.4), t also acts trivially on πi(f̂F), in particular, on

π`+1(f̂F). The isomorphism (3.1) implies that the action of t is also trivial on

π`+1(f̂E). This implies (1− t)π`+1(f̂F) = 0 and (1− t)π`+1(f̂E) = 0. Therefore we
have from (3.3) and (3.1)

(3.5)

 H`+1(f̂E) ∼= π`+1(f̂E) ∼= π`+1(fE)

∼= (3.1)

H`+1(f̂F) ∼= π`+1(f̂F) ∼= π`+1(fF).

Since the restrictions of f , fE , fF, fN , fL are of degree 1, the homomorphisms

(f̂E)∗ : Hi(Ê;Z)→ Hi(F̂ ;Z), (f̂F)∗ : Hi(F̂N ;Z)→ Hi(F̂T ;Z), (f̂N )∗ : Hi(N̂ ;Z)→
Hi(T̂ ;Z) and (f̂L)∗ : Hi(L̂;Z) → Hi(M̂ ;Z) are all surjective. Let Ki(Ê), Ki(F̂N).
Ki(N̂) and Ki(L̂) be the corresponding kernels.

Consider the following diagram obtained by Mayer-Vietoris sequences:

0 0y y
Ki(F̂N) −−−−→ Ki(Ê)⊕Ki(N̂)y y

Hi+1(Ŵ ) −−−−→ Hi(F̂N) −−−−→ Hi(Ê)⊕Hi(N̂) −−−−→ Hi(Ŵ )

f∗

y∼= y y f∗

y∼=
Hi+1(V̂ ) −−−−→ Hi(F̂T ) −−−−→ Hi(F̂ )⊕Hi(T̂ ) −−−−→ Hi(V̂ )y y

0 0

.

Here we have used the hypothesis that f : W → V is a homotopy equivalence
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(C.1). By diagram chasing we see that

(3.6) Ki(F̂N)→ Ki(Ê)⊕Ki(N̂) is surjective (∀i).

On the other hand, from the homology exact sequences it follows that Ki(F̂N) ∼=
Hi+1(f̂F), Ki(Ê) ∼= Hi+1(f̂E) and Ki(N̂) ∼= Hi+1(f̂N ).

This and (3.5) imply

(3.7) K`(F̂N) ∼= K`(Ê)

We need an elementary algebraic lemma.

Lemma 3.5. Let H, G1, G2 be abelian groups, ϕ : H → G1, ψ : H → G2

homomorphisms. Suppose that ϕ is injective and that ϕ ⊕ ψ : H → G1 ⊕ G2 is
surjective. Then G2

∼= {0}.

Proof. Suppose there were a non-zero element x ∈ G2, and let y ∈ H be mapped
under ϕ⊕ ψ to 0⊕ x. Then ϕ(y) = 0. Since ϕ is injective, y = 0 so x = ψ(y) = 0.
This is a contradiction. �

By Lemma 3.5 together with (3.6) and (3.7), we have

(3.8) K`(N̂) = 0.

Note that 0 ∼= K`(N̂) ∼= K`(L̂) ∼= H`+1(f̂L). Our hypothesis (c): πi(fL) = 0 for

i 5 ` and the Hurewicz theorem imply π`+1(f̂L) ∼= H`+1(f̂L) ∼= 0. Thus

(3.9) πi(fL) ∼= 0 (i 5 `+ 1).

This is the conclusion (f). From (3.9) and (3.4) follows

(3.10) πi(fF) ∼= πi(f̂F) ∼= 0 for i 5 `+ 1.

This is the conclusion (e). From (3.10) and (3.5) follows

(3.11) πi(fE) ∼= 0 for i 5 `+ 1.

We see that

K`+1(F̂N) ∼= H`+2(f̂F)
∼= π`+2(f̂F)

(Hurewicz. Recall that the t-action on π`+2(f̂F) is trivial.)
∼= π`+2(f̂L) (`+ 2 = 3)
∼= H`+2(f̂L) (Hurewicz)
∼= K`+1(L̂)
∼= K`+1(N̂).
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Apply this to (3.6) and use Lemma 3.5. Then we have

(3.12) K`+1(Ê) = 0.

Consider the exact sequence of Φ:

π`+2(f̂F)→ π`+2(f̂E)→ π`+2(Φ̂) ∼= 0 by (a).

From this we see that the t-action on π`+2(f̂E) is trivial, because its action on

π`+2(f̂F) is trivial. Thus 0 = K`+1(Ê) ∼= H`+2(f̂E) ∼= π`+2(f̂E) ∼= π`+2(fE). This
together with (3.11) implies the conclusion (d). This completes the proof of Lemma
3.4. �

Proof of Theorem 3.3.

Cases where m = 4 or 5.

First recall Namioka’s theorem [26]. We state it in our situation.

Theorem 3.6.(Namioka’s Theorem) Let Φ =


E

fE−−−−→ Fx x
FN

fF−−−−→ FT

. Suppose

πi(F,FT ) = 0 for i 5 2 and πi(fE) = 0 for i 5 k (k = 1).

(I) πi(Φ) = 0 for 1 < i 5 r if and only if Hi(Φ; Λ) = 0 for i 5 r. Here
1 < r 5 k + 2.

(II) If 1 < r 5 k + 1 and πi(Φ) = 0 for i 5 r, the Hurewicz map

h : πi(Φ)→ Hi(Φ; Λ)

is isomorphic for i 5 r + 1.

We now want to prove that our condition “Lm and Mm are exterior 2-
connected”implies (ii)∼(v) of Theorem 3.3 for m = 4, 5 (

[
m
2

]
= 2).

From Λ-homology exact sequence of Φ, we have

Hi+1(Φ; Λ) ∼= Ki(E,FN ; Λ).

Since πi(E,FN) ∼= πi(F,FT ) = 0 (i 5 2),

Hi(E,FN ; Λ) ∼= Hi(F,FT ; Λ) ∼= 0 (i 5 2)

by the Hurewicz theorem.
Thus Hi(Φ) ∼= Ki−1(E,FN ; Λ) ∼= 0 for i 5 3. Since π1(fE) ∼= 0, we have

πi(Φ) ∼= 0 for i 5 3 by Namioka’s theorem (I). (π1(fE) ∼= 0 follows from the diagram
at the end of §3.1.) Then apply Lemma 3.4 with ` = 1 to obtain πi(fE) = 0 (i 5 3),
πi(fF) = 0 (i 5 2) and πi(fL) = 0 (i 5 2). This proves Theorem 3.3 for m = 4, 5.
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Cases where m = 6.

Inductively we assume πi(Φ) = 0 (i 5 `+ 2), πi(fE) = 0 (i 5 `+ 2), πi(fF) = 0
(i 5 `+ 1) and πi(fL) = 0 (i 5 `+ 1). These assumptions in fact hold when ` = 1.
Apply Namioka’s theorem (II) with k = `+ 1, r = `+ 2. Then the Hurewicz map

h : π`+3(Φ)→ H`+3(Φ; Λ)

is an isomorphism. Therefore any element of K`+2(E,FN ; Λ) ∼= H`+3 (Φ; Λ) can
be represented by an element α of π`+3(Φ). The “boundary” ∂α in π`+2(E,FN)
is proved to be represented by a normally embedded (`+ 2)-handle H attached to
Lm = f−1(M), provided that `+ 2 5

[
m
2

]
(See [8, Lemma 3.3]).

Perform ambient codimension 2 handle exchange along H via homotopy of f
(Lemma 3.1), then we have (by Lemma 3.2)

Hi(Φ
′; Λ) ∼= Ki−1(E′,FN ′; Λ) ∼= 0 (i 5 `+ 2),

and

H`+3(Φ′; Λ) ∼= K`+2(E′,FN ′; Λ) ∼= K`+2(E,FN ; Λ)/(∂α).

Since H`+3(Φ; Λ) is finitely generated over Λ, we will have H`+3(Φ′; Λ) ∼= 0 after a
finite number of the procedures above.

Apply Namioka’s theorem (I) with k = `+ 2, r = `+ 3. Then we have

πi(Φ
′) = 0 for i 5 `+ 3.

Apply Lemma 3.4 with ` + 1 in place of `, then we have πi(f
′
E) = 0 (i 5 ` + 3),

πi(f
′
F) = 0 (i 5 `+ 2) and πi(f

′
L) = 0 (i 5 `+ 2).

Proceeding inductively we will have

πi(Φ) = 0 (i 5
[m

2

]
+ 1), πi(fE) = 0 (i 5

[m
2

]
+ 1),

πi(fF) = 0 (i 5
[m

2

]
), and πi(fL) = 0 (i 5

[m
2

]
).

This completes the proof of Theorem 3.3. �

4. Proof of Theorem 2.5 in the Odd Dimensional Case

Suppose m = dimLm = 2n + 1 = 5; n =
[
m
2

]
. Let Φ =


E

fE−−−−→ Fx x
FN

fF−−−−→ FT

.

There are two exact sequences which contain πn+2(Φ);

α) πn+2(Φ)
∂→ πn+1(E,FN)→ πn+1(F,FT )→ · · · ,
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β) πn+2(Φ)
∂′→ πn+1(fF)→ πn+1(fE)→ · · · .

In §3 we performed surgery below the middle dimension, thus we may assume

πi(fL) = 0 for i 5 n,

πi(fE) = 0 for i 5 n+ 1,

πi(fF) = 0 for i 5 n (Theorem 3.3).

Then from β), we have

β′) πn+2(Φ)
∂′→ πn+1(fF)→ 0.

By (3.4) in the proof of Lemma 3.4, we have πn+1(fF) ∼= πn+1(fL) ∼=
Hn+1(fL; Λ′) ∼= Kn(L; Λ′). Thus β′) becomes

β′′) πn+2(Φ)
∂′→ Kn(L; Λ′)→ 0. (∂′ is used by abuse of the notation.)

Our task is to make fL a simple homotopy equivalence, and fL is already n-
connected. Thus we have only to kill Kn(L; Λ′). Wall’s surgery theory [32] tells us
that there is a unique obstruction θ(fL) in Lm(π′) to killing the group Kn(L; Λ′) by
abstract Wall surgery. θ(fL) is defined by the surgery obstruction of the following
normal map diagram:

(
∗∗∗)

νL −−−−→ (f)∗νW |M ⊕ Ty y
Lm

fL−−−−→ Mm

where f : V → W is a homotopy inverse of f : W → V and νL (resp. νW ) the
normal bundle of L (resp. W).

We will show that θ(fL) is also the obstruction to make fL a simple homotopy
equivalence by codimension 2 ambient surgery through a homotopy of f (rel. the
boundary).

First suppose θ(fL) = 0. Then following [32], we can find a finite number of
disjoint embeddings gi : Sn ×Dn+1 → Lm, each joined by a path to a base point,
having the property that if we perform surgery on them, the resulting fL : L→M
will be a simple homotopy equivalence. All of them represent elements of Kn(L; Λ′).
Denote the elements by [gi]. By β′′), there are elements g̃i in Φn+2(Φ) such that
∂′g̃i = [gi]. Let ∂ be the boundary homomorphism in α). Then ∂g̃i are elements
of πn+1(E,FN) which are represented by a map hi : (Dn+1, Sn)→ (E,FN). In [8,
Lemma 3.3] we proved that in the odd dimensional case where m = 2n+ 1 hi’s can
be represented by normally embedded (n+ 1)-handles Hi = Dn+1

i ×Dn+1
i .

Moreover, it is easily verified that the attaching framed n-spheres Hi ∩ Lm =
∂Dn+1

i ×Dn+1
i can be taken to coincide with any framed n-spheres in Lm if they

represent the same homotopy classes as Hi∩Lm’s. Thus we may assume Hi∩Lm =
gi(S

n×Dn+1). Then Lemma 3.1 can be applied, and there is a homotopy (rel. ∂W )
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of f to a map f ′ which realizes the surgery on the embedded spheres gi(S
n×Dn+1)

as the ambient codimension 2 surgery along the (n+ 1)-handles Hi;

f ′−1(Mm) = (Lm −
⋃
i

Int gi(S
n ×Dn+1)) ∪

⋃
i

Dn+1
i × ∂Dn+1

i .

The resulting fL′ : L′ →M is clearly a simple homotopy equivalence.
Conversely, suppose that f is homotopic (rel. ∂W ) to a map f ′ such that

f ′|f ′−1(M) : f ′−1(M)→M

is a simple homotopy equivalence. Then by the transverse regularity theorem, we

can construct a normal cobordism between (
∗∗∗) and a normal map which is a simple

homotopy equivalence. Thus θ′(fL) = 0. This completes the proof of Theorem 2.5
in the odd dimensional cases. �

5. The Even Dimensional Case

Suppose m = dimLm = 2n = 4. The sequences α) β) β′) β′′) remain valid in
this case.

In order to prove Theorem 2.5 in the even dimensional case, we first introduce
the notion of geometric free cores (Cf. [17, Proof of Lemma 5.8]).

Let Λ′ = Z[π′] as before. Wall [32, Lemma 2.3] proved that Kn(L; Λ′) is a stably
free Λ′-module with a preferred equivalence class of s-basis. We may assume that
Kn(L; Λ′) is actually Λ′-free, for after performing codimension 2 surgery on some
trivial n-handles, we can change Kn(L; Λ′) into Kn(L; Λ′)⊕(standard planes). Here
“A trivial n-handle” means an n-handle representing the zero element of πn(E,FN).
See Wall [32, Lemma 5.5]. Let e1, e2, . . . , er be the preferred Λ′-basis of Kn(L; Λ′).
Then they are lifted to elements ẽ1, ẽ2, . . . , ẽr of πn+2(Φ). See sequence β′′). By the
standard technique, we can represent the elements ∂ẽ1, ∂ẽ2, . . . , ∂ẽr of πn+1(E,FN)
by “pathed” disjoint embeddings gi : (Dn+1, ∂Dn+1) → (E,FN), i = 1, . . . , r.
(This technique is explained in [32, pp. 39–40].) Take a regular neighborhood
Ri of gi(D

n+1) in E and construct a submanifold N ∪ (∪ri=1Ri) in Wm+2. This
submanifold is called a geometric free core of f : W → V and is denoted by W ∗. A
geometric free core has some useful properties.

In order to state the properties we introduce some notations:

U∗ = W −W ∗, the complement of IntW ∗,
FW ∗ = U∗ ∩W ∗, the frontier of W ∗

N∗ = 1
2N , the tubular neighborhood of Lm in W ∗

(we may assume that the radius of N∗ is a half of that of N),
E∗ = W ∗ −N∗, the exterior of N∗ in W ∗,
FN∗ = N∗ ∩ E∗, the frontier of N∗.
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Theorem 5.1.

(i) f : W → V is homotopic (rel. ∂W ) to a map (again denoted by f) which is
t-regular along FT with f−1(T ) = W ∗.

(ii) f |W ∗ : W ∗ → T is a simple homotopy equivalence.

(iii) f |FW ∗ : FW ∗ → FT is a Λ′-homology equivalence.

(iv) f |U∗ : U∗ → F is a Λ′-homology equivalence.

(v) πi(E
∗,FN∗) = 0 for i 5 n, and πn+1(E∗,FN∗) is a free Λ-module with the

basis ∂ẽ1, . . . , ∂ẽr.

Remark 5.2. Λ′-homology of F is defined to be H∗(F̂ ,Z) in the notation of the
proof of Lemma , similarly for Λ′-homologies of U∗, FW ∗ or FT .

Proof of Theorem 5.1
(i) This was done in the proof of “Fundamental Lemma” of [15, § 2.1]. We will
state the result in our present situation; we proved there that if the core disks of
Ri’s (representing elements of πn+1(E,FN)) are mapped to zero in πn+1(F,FT ) by
f , then we can construct the desired homotopy which “splits” along T .

The condition is satisfied in our situation; the core disks of Ri’s are of the form
∂ẽi, ẽi ∈ πn+2(Φ), and so they are mapped to zero in πn+1(F,FT ). This follows by
the exactness of (α).
(ii) A proof was given in [17, Lemma 5.2]. We repeat it here for completeness.

Let ψ : L → W ∗ be the inclusion, ϕ : L → T the composition L
fL→ M

∼→ T .
Then we have the diagram

0 −−−−→ C∗(L)
ψ−−−−→ C∗(W

∗) −−−−→ C∗(ψ) −−−−→ 0∥∥∥ yf |W∗ yθ
0 −−−−→ C∗(L)

ϕ−−−−→ C∗(T ) −−−−→ C∗(ϕ) −−−−→ 0

;

we identify the mapping cylinder of ϕ with T .
According to [32, Lemma 2.5], in order to prove that f |W ∗ is a simple homotopy

equivalence, we have only to show that θ is a simple homotopy equivalence. Let H

be the Λ′-homology sequence of C∗(ψ)
θ→ C∗(ϕ), then we have

τ(C∗(ϕ)) = τ(C∗(ψ)) + τ(θ) + τ(H)

([23, Theorem 3.2]), where τ denotes the Whitehead torsion. The only non-zero Λ′-
homology of C∗(ψ) is Hn+1(ψ) which is based isomorphic to Kn(L; Λ′). This follows
from the construction of W ∗. On the other hand the only non-zero Λ′-homology of
C∗(ϕ) is Hn+1(ϕ) which is only non vanishing kernel Kn(L; Λ′) of fL : L→M . θ∗
induces the identity of these two Kn(L; Λ′)’s by the construction of W ∗. Thus we
have τ(H) = 0.
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The bases ofHn(ϕ) and ofHn+1(ψ) are chosen so that τ(C∗(ϕ)) = τ(C∗(ψ)) = 0
([32, p. 27]). Hence τ(θ) = 0 follows as desired.

(iii) and (iv) follow easily from (ii) and the hypothesis that f : W → V is a
homotopy equivalence.

(v) is obvious by the construction of W ∗.
The proof of Theorem 5.1 is completed. �

Because of property (ii) of W ∗ (Theorem 5.1), W ∗ is an m-Poincaré thickening
in the sense of [17, Definition 1.1]. Thus there is a unique obstruction η(W ∗) in
Pm(E) to finding a locally flat spine of W ∗ [17]. We assert that η(W ∗) serves as the
obstruction of the weak h-regularity problem as well.

Lemma 5.3. If η(W ∗) = 0, f is homotopic (rel. ∂W ) to a map denoted by the same
letter f with f |f−1(M) : f−1(M)→M a simple homotopy equivalence. (m = 6).

Lemma 5.4.The element η(W ∗) ∈ Pm(E) does not depend on a particular choice
of a geometric free core W ∗ and depends only on the diagram

f : (W,∂W ) −→ (V, ∂V )
∪

(M,∂M).

These lemmas will be proved in §5.2.

5.1. Seifert Forms

Let us recall the definition of Seifert (−1)n-forms introduced in [17]. Let E =

{1 → C → π
$∗→ π′ → 1} be associated with the pair (W ∗, L); π = π1(FN∗) ∼=

π1(E∗), and π′ = π1(L). The homomorphism $∗ : π → π′ is induced by the
projection $ of the S1-bundle FN∗ → L. C is a cyclic group with a specified
generator t. Let Λ be Z[π], and let Λ′ be Z[π′], as usual. Abelian groups Qtn(π)
and Qn(π′) are defined by

Qtn(π) = Λ/{a− (−1)na · t | a ∈ Λ},
Qn(π′) = Λ′/{b− (−1)nb | b ∈ Λ′},

where ¯ : Λ → Λ (or Λ′ → Λ′) is induced by g 7→ g−1 for g ∈ π or (by g 7→ g−1

for g ∈ π′). Here Qn(π′) is Wall’s notation [32]. The homomorphism $∗ : π → π′

induces homomorphisms $∗ : Λ→ Λ′ and $∗ : Qtn(π)→ Qn(π′).
A triple (G,λ, µ) consisting of a finitely generated free Λ-module G and maps

λ : G × G → Λ, µ : G → Qtn(π) is called a free Seifert (−1)n-form over E if it
satisfies the following ([17]):

(a) λ(x, y) = (−1)nλ(y, x) · t

(b) For any fixed y, λ(∗, y) : G→ Λ is a Λ-homomorphism.

(c) µ(x+ y) = µ(x) + µ(y) + λ(x, y).



Note on the Codimension Two Splitting Problem 579

(d) λ(x, x) = µ(x) + (−1)nµ(x) · t.

(e) µ(ax) = aµ(x)a for ∀a ∈ Λ.

(f) Λ′ ⊗Λ G (denoted by G′) is a free Λ′-module with a preferred basis {ei}, and
G′ has a structure of Wall’s special Hermitian (−1)n-form (λ0, µ0).

(g) The following diagrams are commutative:

G×G λ−−−−→ Λ

∂×∂
y y$∗

G′ ×G′ λ0−−−−→ Λ′

,

G
µ−−−−→ Qtn(π)

∂

y y$∗
G′

µ0−−−−→ Qn(π′)

,

where ∂ : G → G′ is defined by ∂(x) = 1 ⊗ x. Sometimes (G′, λ0, µ0) is
denoted by Λ⊗Λ (G,λ, µ).

A free Seifert (−1)n-form (G,λ, µ) is null-cobordant if there is a sub Λ-module
H of G such that λ(H ×H) = 0, µ(H) = 0 and H is mapped onto a subkernel of
G′ under ∂ : G→ G′.

(G,λ, µ) is stably null-cobordant if a direct sum of (G,λ, µ) and a finite number
of “standard planes” defined by (Λx⊕ Λy, λ, µ) with λ(x, y) = 1, λ(y, x) = (−1)nt,
µ(x) = µ(y) = 0, is null-cobordant. (Note that our “standard plane” is not the
same as in the Wall’s book [32].)

Definition 5.5.([17]) The group P2n(E) is defined to be the Grothendieck group
of all free Seifert (−1)n-forms over E modulo the subgroup generated by all stably
null-cobordant forms. The group structure is given by the direct sum ⊕.

Remark 5.6. P2n+1(E) is defined to be L2n+1(π′).

Remark 5.7. Note that (G,λ, µ) represents the zero of P2n(E) if and only if there
is a stably null-cobordant form Y such that (G,λ, µ)⊕ Y is stably null-cobordant.
However we have proved, in [17, Lemma 5.3], that it is equivalent to saying that
(G,λ, µ) itself is stably null-cobordant.

5.2. Geometric Meaning of Seifert Forms

Let W ∗ be a free core of f : W → V . We proved in [17] that the Λ-module
πn+1(E∗,FN∗) carries a structure of a Seifert (−1)n-form (λ, µ). (See Appendix of
the present paper.)

The following properties are important to our purpose:
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(i) Λ′ ⊗Λ πn+1(E∗,FN∗) is identified with Kn(L; Λ′), and Λ′ ⊗Λ (λ, µ) with
(λ0, µ0), Wall’s Hermitian form on Kn(L; Λ′).

(ii) Elements x1, x2, . . . , xs of πn+1(E∗,FN∗) can be represented by mutually
disjoint normally embedded (n+ 1)-handles if and only if µ(xi) = 0 (∀i), and
λ(xi, xj) = 0 (∀i, j), (2n = 6).

We can now prove Lemma 5.3.

Proof of Lemma 5.3. The obstruction η(W ∗) ∈ P2n(E) is represented by the free
Seifert (−1)n-form (πn+1(E∗,FN∗), λ, µ). Suppose η(W ∗) = 0, then by Remark
5.7 above, the Seifert form (πn+1(E∗,FN∗), λ, µ) is stably null-cobordant. After
performing codimension 2 surgery along some trivial n-handles, we may suppose it
is actually null-cobordant (See [17, Lemma 4.6].). Then there is a sub Λ-module H
which is mapped onto a subkernel of Kn(L; Λ′), satisfying λ(H×H) = 0, µ(H) = 0.
Let e1, . . . , er be the basis of the subkernel.

These e1, . . . , er are lifted to some ẽ1, . . . , ẽr in H ⊂ πn+1(E∗,FN∗). By the
geometric property (ii) of Seifert forms, ẽ1, . . . , ẽr can be represented by mutually
disjoint normally embedded (n + 1)-handles H1, . . . ,Hr. If F ∗, T ∗ are defined by

T ∗ =
1

2
T , F ∗ = T − T ∗, it is clear that πi(F

∗,FT ∗) = 0 for all i. Thus the quadru-

ple


E∗ −−−−→ F ∗x x
FN∗ −−−−→ FT ∗

 denoted by Φ∗, satisfies πi+2(Φ∗)
∼=→ πi+1(E∗,FN∗) for

all i. Lemma 3.1 can now be applied to H1, . . . ,Hr, and f |W ∗ : W ∗ → T ;
we can find a homotopy (rel. ∂W ∗) of f |W ∗ to a map f ′ with f ′−1(M) the
resulting submanifold obtained by performing surgery on the framed n-spheres
Lm ∩ Hi

∼= Sn × Dn+1 representing e1, . . . , er. Since {e1, . . . , er} is the preferred
basis of a subkernel of Kn(L; Λ′), the map f ′−1(M)→M must be a simple homo-
topy equivalence [32]. Extending the homotopy of f |W ∗to the whole of W by the
identity, we will obtain the desired homotopy. �

Proof of Lemma 5.4. Let W ∗1 be another free core of f : W → V . We have
to prove that η(W ∗) = η(W ∗1 ) ∈ P2n(E). There is a homotopy of f (rel. ∂W )
“between W ∗ and W ∗1 ”; this means that there is a map H : W × I → V × I with
f = H|W × {0} : W × {0} → V × {0}, f ′ = H|W × {1} : W × {1} → V × {1}, and
f−1(T × {0}) = W ∗ and f ′−1(T × {1}) = W ∗1 hold.

As we proved in [8], the submanifold M × I in V × I can be transformed into
an exterior n-connected submanifold Y 2n+1 by exchanging handles in codimension
2 (rel. ∂(M × I)). Let U be a tubular neighborhood of Y in V × I, B the exterior
of U ; B = V × I − U . U can be taken so that U ∩ (T × {i}) = T ∗ × {i} (i = 0, 1).
Let FU be the frontier of U ; FU = U ∩B.

Now consider the preimage Z2n+1 = H−1(Y ) ⊂W × I. By exchanging handles
in codimension 2, Z2n+1 can be made exterior n-connected, and this surgery can
be carried out as surgery through a homotopy of H (rel. ∂(W × I)). This is
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because Y 2n+1 is already exterior n-connected, so any normally embedded i-handle
in W × I attached to Z2n+1 shrinks if it is mapped into (B,FU), provided that
i 5 n. Therefore Lemma 3.1 is applied.

Let Q denote a tubular neighborhood of Z in W × I, FQ the frontier of Q, and
let P be the exterior of Q.

Let Ψ =


E∗ ∪ E∗1 −−−−→ Px x

FN∗ ∪ FN∗1 −−−−→ FQ

, Ψ′ =


F ∗ ∪ F ∗1 −−−−→ Bx x

FT ∗ ∪ FT ∗1 −−−−→ FU

, where

E∗1 , FN∗1 (or F ∗1 , FT ∗1 ) denote the exterior and the frontier in W ∗1 (or T1). By the
exterior n-connectivity of Y and Z, we have

(∗)

Hn+1(E∗,FN∗; Λ)
⊕

Hn+1(E∗1 ,FN
∗
1 ; Λ)

−−−−→ Hn+1(P,FQ; Λ) −−−−→ Hn+1(Ψ; Λ) −−−−→ 0y y y
0 −−−−→ Hn+1(B,FU ; Λ) −−−−→ Hn+1(Ψ′; Λ) −−−−→ 0

Here we used the fact that πi(F
∗,FT ∗) ∼= πi(F

∗
1 ,FT

∗
1 ) = 0 (∀i). Note that the

map H is of degree one, hence the vertical maps are onto. We can kill the kernel of
Hn+1(Ψ; Λ)→ Hn+1(Ψ′; Λ) and make it an isomorphism. Here we will give an indi-
cation of it. By Namioka’s theorem, any element of Hn+1(Ψ; Λ) is represented by a
suitable embedded n+1-disk g : (Dn+1;Dn

+, D
n
−)→ (P ;E∗,FQ), where Dn

+ (or Dn
−)

is the upper (or lower) hemisphere of ∂Dn+1, with f |Dn
+ : (Dn

+, ∂D
n
+)→ (E∗,FN∗)

being null-homotopic. By “attaching a collar” to g(Dn
−) we extend the embed-

ding g to an embedding g : (Dn+1;Dn
+, D

n
−) → (W × I;W ∗, Z) which satis-

fies g(Dn+1) ∩ Z = g(Dn
−). Then this extends to a“normally embedded knob”

g̃ : (Dn+1;Dn
+, D

n
−) × Dn+1 → (W × I;W ∗, Z) satisfying g̃(Dn+1 × Dn+1) ∩ Z =

g̃(Dn
− × Dn+1). (See the proof of [17, Proposition 4.11].) If the first embed-

ding g : (Dn+1;Dn
+, D

n
−) → (P ;E∗,FQ) represents an element in the kernel of

Hn+1(Ψ; Λ) → Hn+1(Ψ′; Λ), it is proved that we can construct a homotopy (rel.
∂(W × I)−W ∗ × {0}) from H to a map H ′ which satisfies

H ′−1(Y ) = Z − g̃(Dn
− ×Dn+1) ∪ g̃(Dn+1 × ∂Dn+1).

The construction of the homotopy is essentially the same as in the proof of Lemma
which was omitted. Repeating the above “knob exchanging” process, we can kill
the kernel of Hn+1(Ψ; Λ)→ Hn+1(Ψ′; Λ).

The effect of the surgery on Hn+1(E∗,FN∗) is to add a direct sum of standard
planes, and this does not affect the class in P2n(E) which it represents. (Cf. the
proof of [17, Proposition 4.11].) And we remain using the same notations E∗, F∗N .

Now we consider the diagram (∗) above again. Since we have made the vertical
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map on the right an isomorphism, we get the exact sequence (with Λ-coefficients):

Hn+1(E∗;FN∗)⊕Hn+1(E∗1 ;FN∗1 )→ Hn+1(P,FQ)→ Hn+1(B,FU)→ 0.

Note that the kernel of Hn+1(P,FQ) → Hn+1(B,FU) is Kn+1(P,FQ) by the
definition, so we have

(∗∗) Hn+1(E∗,FN∗)⊕Hn+1(E∗1 ,FN
∗
1 )→ Kn+1(P,FQ)→ 0.

Let K denote the kernel of this surjection. We have

Hn+1(E∗,FN∗)⊕Hn+1(E∗1 ,FN
∗
1 ) ∼= πn+1(E∗,FN∗)⊕ πn+1(E∗1 ,FN

∗
1 )

by the Hurewicz theorem, and it has the Seifert (−1)n-form representing η(W )∗ −
η(W1)∗. It is shown in [17, Theorem 3.5, Proposition 4.11] that the Seifert form
vanishes on the sub Λ-module K.

Notice that Λ′ ⊗Λ Hn+1(E∗,FN∗) ∼= Kn(L,Λ′), Λ′ ⊗Λ Hn+1(E∗1 ,FN
∗
1 ) ∼=

Kn(L1,Λ
′). Tensoring Λ′ with (∗∗), we have

Λ′ ⊗Λ K → Kn(L; Λ′)⊕Kn(L1; Λ′)→ Kn(Z,Λ′)→ 0.

This shows (by Wall [32, Proof of 5.7]) that Λ′ ⊗Λ K is mapped onto the subkernel
of Kn(L; Λ′)⊕Kn(L1; Λ′).

Thus the Seifert form on πn+1(E∗,FN∗)⊕πn+1(E∗1 ,FN
∗
1 ) is null-cobordant by

definition, and the element η(W ∗) − η(W ∗1 ) which it represents is zero in P2n(E),
i.e., η(W ∗) = η(W ∗1 ). This completes the proof of Lemma 5.4. �

Now Theorem 2.5 follows immediately from Lemmas 5.3 and 5.4; we define γ(f)
in the theorem to be η(W ∗) in the even dimensional case. The proof of Theorem
2.5 is completed. �

6. Some Properties of the Obstruction

6.1. Geometric Periodicity

Theorem 6.1. Let

 f : (Wm+2, ∂W ) → (V m+2, ∂V )
∪

(Mm, ∂M)

 be a diagram of the

weak h-regularity problem with m = 4 satisfying (C.1) ∼ (C.4) in §2. Let E be the
associated extension. Then we have

γ(idCP2 × f) = ρ(γ(f)) ∈ Pm+4(E),

where

 idCP2 × f : CP2 × (Wm+2, ∂W ) → CP2 × (V m+2, ∂V )
∪

CP2 × (Mm, ∂M)

 is the prod-

uct with the complex projective plane CP2, and ρ : Pm(E) → Pm+4(E) is the alge-
braic periodicity isomorphism.
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Proof. In the odd dimensional case, this is obvious by the definition of γ(f) = θ(fL).
In the even dimensional case, we have defined γ(f) by η(W ∗) with W ∗ a geometric
free core of f . The product CP2 ×W ∗ is clearly a geometric free core of idCP2

× f .
Therefore, we have

γ(idCP2
× f) = η(idCP2

×W ∗)
= ρ(η(W ∗)) ([17, Theorem 5.12])
= ρ(f). �

6.2. The Invariance of γ(f) under L-equivalence of M

Let f be as in Theorem 6.1. We will say that f splits along M if f is homotopic
(rel. ∂W ) to a map f ′ which is weakly h-regular along M . The obstruction γ(f) in
Theorem 2.5 is written here as γM (f) to emphasize the submanifold M .

Theorem 6.2. Let (Mm
i , ∂Mi) ⊂ (V m+2, ∂V ) (i = 1, 2) be exterior 2-connected

submanifolds of (V, ∂V ) satisfying conditions (C.1) ∼ (C.4) (of §1). Suppose that
∂M1 = ∂M2 and that M1 and M2 are L-equivalent (rel. the boundary) to each other
in the sense of Thom. Then we have

γM1
(f) = γM2

(f) ∈ Pm(E),

(m = 4).

Corollary 6.3. If m = 5, f splits along M1 if and only if it splits along M2.

Outline of the proof of Theorem 6.2. Since M1 and M2 are L-equivalent, there exists
a submanifold Y 2n+1 in V × I such that

Y ∩ V × {0} = M1 × {0},
Y ∩ V × {1} = M2 × {1}, and
Y ∩ ∂V × I = ∂M1 × I.

Then the rest of the proof is completely the same as Lemma 5.4 or, in the odd
dimensional case, as in §4. �

We will collect some known results on the structure of the group Pm(E).

Theorem 6.4.

(i) P2k+1(1→ C → π → π′ → 1) = L2k+1(π′)

(ii) Pm(1→ 1→ π
id→ π → 1) = Lm(π), in particular

Pm(1→ 1→ 1→ 1→ 1) = Lm(1),

(iii) Pm(1→ Z id→ Z→ 1→ 1) = Cm−1 (m = 5)
(Cm−1 is the knot cobordism group of (m− 1,m+ 1)-knots.)
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The isomorphism (i) is the definition of P2k+1(E). The isomorphisms (ii) and
(iii) are proved in [17].

Let Pm(C) denote the group Pm(1→ C → C → 1→ 1) for simplicity.

Theorem 6.5. P4k+2(C) is infinitely generated if C is a cyclic group of even (or
infinite) order.

For the proof of Theorem 6.5, see [17].

Let E denote an extension {1→ C
j→ π → π′ → 1} with j the inclusion. Let ρ

be the morphism defined by the following diagram:

ρ :

1 −−−−→ C
id−−−−→ C −−−−→ 1 −−−−→ 1yid

yj y
1 −−−−→ C

j−−−−→ π −−−−→ π′ −−−−→ 1

.

Theorem 6.6. If π′ is a finite group, then all elements in the kernel of ρ∗ :
Pm(C)→ Pm(E) are of finite order whose orders divide the order of π′. Here ρ∗ is
the homomorphism induced by ρ.

Corollary 6.7. If C = Z and the order of π′ is odd, then the homomorphism
ρ∗ : Pm(Z)→ Pm(E) is injective.

Proof of Corollary 6.7. According to Theorem 6.4 (iii), Pm(Z) ∼= Cm−1. Levine
[11, 12] has proved that Cm−1 contains no odd torsions. Thus Corollary 6.7 follows
from Theorem 6.6. �

Proof of Theorem 6.6. By the periodicity of Pm(E), we may assume that m is
sufficiently large. Let ξ : E → Mm−1 be a closed 2-disk bundle over an (m −
1)-manifold which “represents” E, i.e., the short exact sequence derived from the
homotopy exact sequence of the associated circle bundle ∂E →M is isomorphic to
E. In the following, M is identified with the zero section of E →M .

It is proved in [17] that Pm(Z) → Pm(C) is onto and any element σ of Pm(C)
is represented by a PL (m− 1,m+ 1)-knot κ = (Σm−1, Sm+1). Taking a cone over
κ = (Σm−1, Sm−1), we have a (not necessarily locally flat) disk pair (∆m, Dm+2).
Consider a pairwise boundary connected sum of (E×I,Mm−1×I) and (Dm+2,∆m).
Then it is clear that (W,∂((M × I)\∆m)) = ((E × I)\Dm+2, ∂((Mm−1 × I)\∆m))
is an m-Poincaré pair.

Here we recall the main result of [17]: An oriented manifold pair (Wm+2,Km−1)
with Km−1 ⊂ ∂Wm+2 is called an m-Poincaré thickening pair if K is locally flat in
∂W and the pair is simple homotopy equivalent to an m-Poincaré pair. A locally
flat submanifold Lm of Wm+2 is said to be a (locally flat) spine if ∂Lm = Km−1 and
the inclusion Lm → Wm+2 is a simple homotopy equivalence. The main result of
[17] states the following: Given an m-Poincaré thickening pair (Wm+2,Km−1) with
m = 5, there exists a well-defined obstruction element η in Pm(E) which vanishes if
and only if the pair (Wm+2,Km−1) admits a spine (cf. Appendix below).
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Now returning to our present situation, we have η = ρ∗(σ) with ρ∗ : Pm(C)→
Pm(E), where the element σ ∈ Pm(C) is represented by the PL (m− 1,m+ 1)-knot
κ = (Σm−1, Sm+1) taken above. (This follows from the naturality of our obstruction
[17, § 5, Complement 1] and the construction of W = (E × I)\Dm.)

Suppose that the element σ ∈ Pm(C) is in the kernel of ρ∗ : Pm(C) → Pm(E).
Then η = ρ∗(σ) = 0, thus by the main result of [17], a spine Lm of (W,∂((M ×
I)\∆m)) can be found.

Let π : W̃ → W be the universal covering of W . It is easy to see that the
associated extension Ẽ of the m-Poincaré thickening (W̃ , π−1(∂Lm)) is 1 → C →
C → 1 → 1. Clearly W̃ = Ẽ × I\`(Dm+2,∆m) where ` = |π′| is the order of
π′ = π1(W ) ∼= π1(M). Thus the obstruction to finding a spine of (W̃ , π−1(∂Lm))
is ` · σ ∈ Pm(C). However, we have already such a spine L̃ = π−1(Lm). Therefore,
` · σ = 0. This completes the proof of Theorem 6.6. �

A. Appendix

In [17] we show that a kind of intersection form can be defined on πn+1(E,FN),
which is associated with an even-dimensional submanifold of codimension two. The
form is called the Seifert form, and it plays an essential role in the present paper.
In this appendix, we will recall the geometric definition of it.

Let L2n be a 2n-dimensional (locally flat) submanifold of a (2n+2)-dimensional
manifold W 2n+2. We suppose that it is exterior 2-connected. Thus a short exact
sequence E is associated with the manifold pair:

E = {1→ C → π → π′ → 1},

where π = π1(W − L), π′ = π1(W ), C = Coker(π2(W ) → π1(S1)). (Cf. §2.)
Let E be the exterior of a regular neighborhood N of L, FN the frontier of N :
FN = N ∩ E. Then we have π = π1(E) ∼= π1(FN), π′ = π1(W ) ∼= π1(L). A map
f : (Dn+1, Sn)→ (E2n+2,FN) is said to be a nice immersion if

(i) f is a generic immersion in the sense of Haefliger. Thus f |IntDn+1 has only
a finite number of isolated double points at which f(Dn+1) intersects with
itself transversely,

(ii) f |Sn : Sn → FN is an embedding, and

(iii) the composition $ ◦ (f |Sn) : Sn → L2n is a generic immersion, where $ is
the projection map of the S1-bundle FN → L2n.

A nice immersion f is pathed if a path γ(f) in FN from a base point ∗ ∈ FN to a
point in the image f(Sn) is specified.

Two nice immersions f , g : (Dn+1, Sn)→ (E2n+2,FN) intersect nicely if

(i) f(Dn+1) and g(Dn+1) intersect in general position,

(ii) f(Sn) ∩ g(Sn) = ∅ and

(iii) $ ◦ f(Sn) and $ ◦ g(Sn) intersect in general position.



586 Yukio Matsumoto

Assume that two pathed nice immersions f and g intersect nicely. Then we will
define a pairing λ(f, g) as an element of Λ = Z[π] as follows:

Let {p1, · · · , pk} be the set of intersection points of $ ◦ f(Sn) and $ ◦ g(Sn) in
L2n. Let εi(f, g) be the sign ±1 of the intersection at pi. We are assuming that the
S1-fiber of $ is oriented. The orientation convention will be described later. We
take a following loop `i(f, g) in FN :

`i(f, g) = {∗ γ(f)→ pfi → (along the S1-fiber $−1(pi) in the positive direction)→ pgi
γ(g)−1

→ ∗},

where pfi (or pgi ) is the point of f(Sn) (or g(Sn)) over pi, i.e., {pfi } = f(Sn) ∩
$−1(pi) ⊂ FN (or {pgi } = g(Sn) ∩ $−1(pi) ⊂ FN). Let gi(f, g) ∈ π1(FN) be
represented by the loop `i(f, g).

An auxiliary pairing α(f, g) ∈ Z[π] is defined by

α(f, g) =

k∑
i=1

εi(f, g)gi(f, g).

In order to define the pairing λ(f, g) we need another auxiliary pairing β(f, g),
which is defined as follows: Let {q1, . . . , q`} be the set of intersection points of
f(Dn+1) and g(Dn+1) in E2n+2, ε′i the sign ±1 of the intersection at qi.

Let g′i(f, g) ∈ π1(E) (∼= π1(FN)) be defined by the following loop in E:

g′i(f, g) = {∗ γ(f)−→ qi
γ(g)−1

−→ ∗}.

Then the pairing β(f, g) is defined by

β(f, g) =
∑̀
i=1

ε′i(f, g)g′i(f, g).

Now the pairing λ(f, g) is defined by the following formula:

(A.1) λ(f, g) = α(f, g) + (−1)n+1(1− t)β(f, g).

Here t denotes the positive generator of the cyclic group C,
Next we will define an element µ(f) ∈ Qtn(π) which corresponds to the self-

intersection of f .
Let α(f), β(f) ∈ Z[π] be defined analogously to the definition of α(f, g), β(f, g).

To define α(f) and β(f) we have only to replace the “intersection points” in the
definition of α(f, g) and β(f, g) by the “self-intersection points” with an order of the
two branches of $ ◦ f(Sn) (or f(Dn+1)) arbitrarily fixed at each self-intersection
point. If the order is reversed, α(f) and β(f) change. However it is proved in
[17] that the ambiguity of α(f) and (1 − t)β(f) is contained in the subgroup I =
{a − (−1)na · t|a ∈ Λ} of Λ(= Z[π]), so α(f) and (1 − t)β(f) are well-defined as
elements of Qtn(π) = Λ/I. An integer O(f) ∈ Z is defined as follows: Let v be a non-
singular vector field over FN which is along S1-fibers in their positive directions.
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By the condition (iii) of nice immersions, v is transverse to f(Sn). Let O(f) be
the obstruction to extending this non-zero cross-section of the normal bundle of
f(Sn) in FN to a non-zero cross-section of the normal bundle of f(Dn+1) in E. At
this point we use the orientation conventions which will be stated in §A.1 below.
Finally, µ(f) ∈ Qtn(π) is defined by the following:

(A.2) µ(f) = α(f) + (−1)n+1(1− t)β(f) + (−1)n+1O(f),

where O(f) is considered to be an element of Qtn(π) via Z→ Ze ⊂ Λ→ Qtn(π).

A.1. Orientation Conventions.

For an oriented manifold X, we will denote by [X] its orientation, and by [X]p
the local orientation at p. We are given [L2n] and [W 2n+2]. Then [E] is defined
by [E]p = [W ]p (∀p ∈ E). [FN ] is defined by [E]p = [FN ]p × Up, where Up is the
inward normal direction of E at p ∈ FN . The positive direction [S1] of an S1-fiber
is given by [FN ] = [L2n]× [S1]. The normal fiber Rn+1 of f(Sn) in FN is oriented
by [FN ] = [f(Sn)]× [Rn+1].

Proposition A.1.([17, Theorems 2.5, 2.9]) Under the above orientation conven-
tions, λ(f, g) and µ(f) depend only on the homotopy classes of f and g.

Thus we can define the following maps.

λ : πn+1(E,FN)× πn+1(E,FN)→ Λ,
µ : πn+1(E,FN) −→ Qtn(π).

This completes the geometric definition of Seifert forms.

Remark A.2. πn+1(E,FN) is not necessarily a free Λ-module. Moreover, even if
it is Λ-free, the bilinear form λ is not in general unimodular. The deviation from
unimodularity “measures” the extent to which the submanifold L2n is knotted. The
“determinant” detλ is somewhat like the Alexander polynomial. The property (a)
of Seifert forms (§5.1) corresponds to the reciprocity of Alexander polynomials, and
property (f) corresponds to the fact ∆(1) = ±1 in the classical theory.
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