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REMARKS ON THE REIDEMEISTER
NUMBER OF A G-MAP

SuNG K1 CHO AND DAE SEOP KWEON

ABSTRACT. For a G-map ¢ : X — X, we define and characterize
the Reidemeister number Rg () of ¢. Also, we prove that Rg(¢)
is a G-homotopy invariance and we obtain a lower bound of Rg(¢).

1. Introduction

For a self map ¢ of a compact connected polyhedron X, let m (X, ()
and L(¢) denote the fundamental group of X based at g € X and the
set of all liftings of ¢ on a universal covering space, respectively. For
two f1, fo € L(®), set fi ~ fo if there exists an [a] € m (X, zo) such
that fo = [a] o f1 o [@]~!. This is an equivalence relation on L(¢).
The cardinal number of the set of all equivalence classes is called the
Reidemeister number of ¢ and denoted by R(¢).

The following theorem is well known.

THEOREM. (1) The number R(¢) is a homotopy invariance.

(2) There exists a homomorphism fy of (X, z0) induced by an
element f of L(¢). For any two [a],[8] € 71 (X, x¢), set [a] ~ [B] if
there exists a [y] € m1(X, o) such that [3] = [y]o[a]o fx([7]~'). Then
this is an equivalence relation on 71 (X, xg) and the cardinal number of
the set of equivalence classes is equal to R(¢).

(3) There exists a homomorphism H;(¢) of the 1-st homology group
H1(X) of X induced by ¢ such that R(¢) > |Coker(ig, (x) - Hi(¢)")|,
where iy, (x) - Hi(¢)" is a function of Hy(X) defined by (ig,(x)
Hy(6))([#]) = [2] - Hy(6)([2] ) for [2] € Hy(X).
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The purpose of this note is to define the Reidemeister number Rg(¢)
of a G-map ¢ and to generalize the above theorem to the case of a G-
map.

We shall assume throughout this note that X is a connected, lo-
cally path connected, and semi-locally 1-connected space, that G is a
topological group acting effectively on X, and that ¢ : X — X is a
G-map.

2. Main results

Let p: (X, %) — (X,x0) be a based universal covering projection.
For each g € G, let 0, : X — X be the homeomorphism defined by
04(x) = gx for x € X. Since X is simply connected, the map 640 ¢ of
X can be covered by maps of X. Let L(0, o ¢) be the set of all such
liftings of 6, o ¢ and let L£(¢) be the disjoint union of the collection
{L(6, 0 ¢)|lg € G}. Clearly, L(ix) is a subgroup of the group of all
homeomorphisms of X.

DEFINITION 1. Two liftings fi, f2 € L(¢) are said to be conjugate
if there exists [ € L(ix) such that fo = [o f; o I~. The equivalence
classes by conjugacy are called G-lifting classes and the G-lifting classes
of f is denoted by [f](; If £'(¢) is the set of all G-lifting classes, then
Ra(¢) = |L'(9)], the order of L'(¢), is called the Reidemeister number

of ¢.

THEOREM 2. If two maps ¢1,¢2 : X — X are G-homotopic, then
Ra(¢1) = Ra(2).
_ Proof. Let H : X x I — X be a G-homotopy from ¢; to ¢o. If
F € L0, 0 ¢1), then (po /)(F) = (0, 0 61)(p(F)) = (0, © H)(p(&),0)
for all x € X. Since X x [ is connected, there exists a unique lifting
F: XxI — X of §,0H such that F(-,0) = f and poF = 6,0 Ho(pxiy).
Let F(-,1) = f'. Since f' € L(f, o ¢3), we have a function ®,
L(fg 0 ¢1) — L(0, 0 ¢2) defined by ®,(f) = f".

Claim 1. &, is one-to-one: Let fl and fg be distinct elements of

L(B,0¢1) and let F; and F} be the liftings of 8,0 H such that F(-,0) =

f1 and Fg( 0) = fg If Fl(:co, 1) Fg(a:o, 1), then F, = Fy. This is a

contradiction. Thus ®,(f1) = Fi(-, 1) # Fa(-, 1) = ®,4(f2).
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Claim 2. @, is onto: Let f € L(0y0¢5). If we define H' : X xI — X
by H'(xz,t) = H(x,1—t) for (z,t) € X x I, then 6,0 H' is a homotopy
from 6, o ¢y to O, 0 ¢1. Let F' : X x I — X be the lifting of 6, o H’
with F’(-,0) = f’. Define F': X x I — X by F(&,t) = F'(i,1 —t) for
(Z,t) € X x I. Since po F(&,t) = po F'(&,1—t) = 8,0 H' (p(%),1—1t) =
0, 0 H(p(),t) for (Z,t) € X x I and F(,0) € L(e o ¢1), we have F
is the lifting of 6, o H such that F(&,1) = f' = ®,(F(%,0)).

Let ® : L(¢1) — L(¢2) be the function whose restriction to L(650¢1)
is equal to @, for every g € G. By Claim 1 and Claim 2, ® is one-to-one
and onto.

Claim 3. For any l e L(ix) and any f € L(¢1), (folN) d(f)ol
and ®(] o f) — [ o ®(f): Assume [ € L(0g o ix) and f e L, o).
Clearly, fol e L(0 99’ © @1). Let F and K be the liftings of 64 0 H and
049’ © H , respectively, such that F( 0) = f and K(-,0) = fo I. Define
F'iXxI—X by F'(i,t) = F(I(&),t) for (Z,t) € X x I. Because H
is a G-homotopy, F" is the hftmg of 0440 H with F’( 0) = fol. By the
uniqueness of lifting, F' = K. Therefore, ®(fol) = K( 1) = F’( 1) =
F((-),1) =a(f) ol Similarly, we can prove <I>(l o f) =10 ®(f).

Now, assume that for fi, fo € L(¢1), fo =10 fiol !, By Claim
3, ®(fs) =®(ofiol ) =lo®(fiolt)=1lo®(f;)olt. Thus ®
induces a one-to-one onto function from L'(¢1) to L'(¢2), and hence
we have Rg(¢1) = Ra(¢2). O

LEMMA 3. For any fixed fo € L(f,, o ¢), there exists a function
U : L(¢) — L(ix) induced by fy such that V(l o fy) = [ for every
l e ﬁ(ZX)

Proof. Assume f € L(040¢). Since (9990_1 op)(fo(Z0)) = (po f)(&o),
there exists a unique map [ € L(@ggo_l oix) such that I(fo(Zo)) = f(&o).
Obviously, lofy € L(640¢). By the uniqueness of lifting, lofy = f. This
induces a function ¥, : L(f 0¢) — L(Hgggl oix ) defined by ‘Ifg(f) =1,
and hence we have a function ¥ : £(¢) — L(ix) whose restriction to
L(6,0¢) is equal to ¥, for every g € G. Now, let [ € L(f, oix). Then

U(lofo) € LG, . ozX) L(0, oix) because [ o fo € L(By4, © }).
Since [ o fo = W(l o fo) o fo, we have U(l o fo) = L. O
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LEMMA 4. Let f e L(¢) be fixed. Then there exists a homomor-
phism fyu : L(ix) — L(ix) induced by f.

Proof. By the above lemma, there exists a function ¥ : L(¢) —
L(ix) induced by f such that ¥(fol)o f=folforeveryl e L(ix).
This induces a homomorphism f4 : L(ix) — L(ix) defined by fx(l) =

U(fol). In fact, if Iy, 1y € L(ix), then

U(fo(lioly))=U((foly)ol)
=U(U(folr)o(foly))
:\IJ(\I/(foil)o\IJ(fozg)of)
= (T(foly)oU(foly)),
s0 fu(liols) = W(fo(lioly)) = W(fol)oW(foly) = fx(h)o fu(la).00

THEOREM 5. For any two l1,12 € E(ZX) set 1y ~ Iy if there exists
an | € L(ix) such that Iy = [ ol o fu(I"'). This is an equivalence
relation on L(ix). Let [l] be the equivalence class of I. If L'(ix) is
the set of all equivalence Classes, then Rg(¢) = |L (ix)|-

Proof. Define W' : L(ix) — L(¢) by U'(I) = lof forl € L(ix). Since
(ToW)() = U(lof) =lforl e L(ix)and (V' oW)(f') = U(f)of = f’
for f' € L(¢), the map VU is one-to-one and onto.

Let i1,0 € L(ix). Then [l~1 ) f]G = [l~2 o f]G if and only if there
exists an [ € £(ix) such that

laof=1lo(lyof)ol™!
= (lol)o(fol™)
=(lol)o(fg™ef)
if and only if Iy = [ o1y o f4(I™") if and only if [lo]; = [l1];. Thus ¥
induces a one-to-one correspondence between £'(¢) and L' (ix). O

In [4], F. Rhodes defined the fundamental group o(X, zo, G) of a G-
space X, which is a generalization of the concept of the fundamental
group of a topological space.
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LEMMA 6. L(ix) is isomorphic to o(X, zg, G)

Proof. For any | € L(f, 0ix) C L(ix), choose a path 4 in X from
Fo to I(&g). Define ¢ : L(ix) — (X, z0,G) by +(I) = [p7;: g]. Since X is
simply connected, ¢ is well defined. To show that ¢ is a homomorphism,
let I; € L(f,, oix) and Iy € L(,, 0ix). If 7, and A are paths from &
to [ (Zo) and Iy (Zo), respectively, then l507; is a path in X from I (Zo)
to (I001)(Zo) and p(la071) = ga(poF1). Thus, if 45 is a path from Zg to
(l2011)(Z0), we have ((lz0l1) = [poFs; g291] = [poF2*ga(PoT1); geg1] =
[p o F2; g2] * [poA1;91]. This shows that ¢ is a homomorphism.

Now, consider the following diagram

0 - m(X,xg) — L(ix) - G — 0
! vl l
0 - m(X,z9) — o(X,209,G) — G — 0,
where each map is defined naturally. It is easy to show that each
square is commutative and each low is exact. By the five lemma, ¢ is
an isomorphism. O

Let ¢ =10 f# o¢~!. Then ¢4 is a homomorphism of o (X, zg, G).
By Lemma 6, It is possible to restate Theorem 5 as follows:

THEOREM 7. For any two [a1;01],[a2;92] € o(X,zo,G), set
[a1;g1] ~ [ag;ge] if there exists a [B;h] € o(X,x0,G) such that
[a; go] = [B;h] * [a1;91] * ¢4 ([B;h]™1). This is an equivalence rela-
tion on o(X,xo,G) and the order of the set of equivalence classes is
equal to Rg(¢).

THEOREM 8. Ifo(X,xo,G) is abelian, then the subset N = {[3; h]x*
G4 ([B; )~ H)|[B; h] € 0(X, 20, G)} is a normal subgroup of (X, zo, G)
and Rg(¢) = |o(X,x0,G)/N].

Proof. 1t is clear that N is a subgroup of o(X,zo,G), and hence
normal. Let [o; g] € (X, zg, G). From the fact that

{13; h] = [a; g] * 5 ([B; )] DIIB: B € 0(X, 20, G)}
={[o; k] * ([B; g] * ¢ ([B; h]~))[B; h] € 0(X, 30, G)}
=[a; g] * N,
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we have

Ra(¢) = {los gl * Nlles 9] € o(X, 20, G)}| = |o(X, 20, G)/N|. O

DEFINITION 9. ([3]) Let f : G — G be a group homomorphism. If
there exists a positive integer n such that f(G) is abelian, then f is
said to be eventually commutative.

Clearly, every homomorphism of an abelian group is eventually com-
mutative.

DEFINITION 10. ([3]) For any group (G, -) and any homomorphism
f : G — @G, the Reidemeister operator of f on G is the left action of G
on itself given by

(91:92) = 9192~ f(g1")-
We write the set of orbits of the operation as Coker(ig - f') with
elements < g > for g € G.

LEMMA 11. ([3]) Let q : A — B be a surjective homomorphism. If
the diagram

A L o4
ql ql
B < B

of groups and homomorphisms is commutative, then |Coker(iao f)| >
|Coker(ip - g)|-

LEMMA 12. Let i, be the identity on o(X,x¢,G). Then Rg(¢) =
|Coker(is - ¢y)].

Proof. 1f j : o(X,z0,G) — Coker(is - ¢/y) is the function defined
by j(la;g]) =< [a;g] > for [a;g] € o(X,20,G), then j([a1;91]) =
J([az; g2]) if and only if there exists a [3;h] € o(X,xo,G) such that
(23 g2] = [B;h] * [a1;01] * ¢4 ([B;h]71). By Theorem 7, the desired
result follows. O
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THEOREM 13. Let Hy(¢y) @ Hi(0(X,20,G)) — Hi(o(X,z0,G))
be the homomorphism induced by ¢4 : o(X,x0,G) — o(X,zo, G),
where H; is the first integral homology functor from groups to abelian
groups. Then

Ra(¢) > |Coker(ig, (o) - Hi(¢#) )|,

where iy, () is the identity on Hy(o(X,zo,G)). Furthermore, if ¢4 is
eventually commutative, then

Ra(¢) = |coker(ip, () - Hi(¢#))|.

Proof. Let q : 0(X,x0,G) — Hi(0(X,z0,G)) be the natural pro-
jection. Since the following diagram commutes

o(X,20,G) % o(X,20,G)
ql ql
Hy
Hy(0(X,20,G)) ") Hy(0(X, 20, G)),

we have, by Lemma 11 and Lemma 12,

Ra(¢) = |Coker(iy - ¢>;¢)| > |Coker(ig, (o) - Hi(ox)")].

In the case ¢4 is eventually commutative, the result follows from Corol-
lary 1.15 of [3]. O

REMARK. It is well-known that for a group G, H;(G) is isomorphic
to G/G’ where G’ is the commutator subgroup of G. Thus, in the above
theorem, H1 (o (X, zo,G)) and Coker(ig, (o) H1(¢4)') can be replaced
by o(X,z0,G)/0"(X,20,G) and Coker(iy o - (p4)'), respectively,
where i/, is the identity homomorphism on o (X, zo, G)/0’ (X, z9, G)
and ¢ is the homomorphism of o(X, zg, )/’ (X, xo,G) induced by
P

THEOREM 14. If N = {[a; g] * ¢x([a; 9] ")l[as g] € o(X,20,G)},
then

Ra(¢) = |Coker(in, o) - Hi(¢4))| = |o(X, 20, G) /0" (X, 20, G)N|.
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Proof. By the same method as in the proof of Lemma 5 in [2],
we can prove that o/ (X, zg, G)N is a normal subgroup of o(X, zo, G).
Consider the commutative diagram in the proof of Theorem 13 and the
composition 7 o q

o(X,zo,G) N Hi(o(X,z0,Q)) N Coker(ip, (o) -Hi(pg)),

where 7 is the natural projection (Note that Coker(ig, (o) - Hi(¢d4)') is
a group because Hi (o (X, zg,G)) is abelian). Since 1 o ¢ is an epimor-
phism, Coker (i, (o) Hi(¢4)") is isomorphic to o(X, 29, G)/ Ker(noq).
Now, applying the method used in the proof of Theorem 3 in [2], we
have Ker(noq) = o'(X,z9,G)N. Therefore, we obtain the desired
result. O
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