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REMARKS ON THE REIDEMEISTER
NUMBER OF A G-MAP

Sung Ki Cho and Dae Seop Kweon

Abstract. For a G-map φ : X → X, we define and characterize

the Reidemeister number RG(φ) of φ. Also, we prove that RG(φ)

is a G-homotopy invariance and we obtain a lower bound of RG(φ).

1. Introduction

For a self map φ of a compact connected polyhedron X, let π1(X, x0)
and L(φ) denote the fundamental group of X based at x0 ∈ X and the
set of all liftings of φ on a universal covering space, respectively. For
two f̃1, f̃2 ∈ L(φ), set f̃1 ∼ f̃2 if there exists an [α] ∈ π1(X, x0) such
that f̃2 = [α] ◦ f̃1 ◦ [α]−1. This is an equivalence relation on L(φ).
The cardinal number of the set of all equivalence classes is called the
Reidemeister number of φ and denoted by R(φ).

The following theorem is well known.

Theorem. (1) The number R(φ) is a homotopy invariance.

(2) There exists a homomorphism f̃# of π1(X, x0) induced by an

element f̃ of L(φ). For any two [α], [β] ∈ π1(X, x0), set [α] ∼ [β] if

there exists a [γ] ∈ π1(X, x0) such that [β] = [γ]◦ [α]◦ f̃#([γ]−1). Then
this is an equivalence relation on π1(X, x0) and the cardinal number of
the set of equivalence classes is equal to R(φ).

(3) There exists a homomorphism H1(φ) of the 1-st homology group
H1(X) of X induced by φ such that R(φ) ≥ |Coker(iH1(X) ·H1(φ)′)|,
where iH1(X) · H1(φ)′ is a function of H1(X) defined by (iH1(X) ·
H1(φ)′)([z]) = [z] ·H1(φ)([z]−1) for [z] ∈ H1(X).

Received April 9, 1998.
1991 Mathematics Subject Classification: 57S99, 55M20.

Key words and phrases: of a G-map, G-homotopy, fundamental group of a G-
space, Reidemeister operator, eventually commutative.



166 Sung Ki Cho and Dae Seop Kweon

The purpose of this note is to define the Reidemeister number RG(φ)
of a G-map φ and to generalize the above theorem to the case of a G-
map.

We shall assume throughout this note that X is a connected, lo-
cally path connected, and semi-locally 1-connected space, that G is a
topological group acting effectively on X, and that φ : X → X is a
G-map.

2. Main results

Let p : (X̃, x̃0) → (X, x0) be a based universal covering projection.
For each g ∈ G, let θg : X → X be the homeomorphism defined by
θg(x) = gx for x ∈ X. Since X̃ is simply connected, the map θg ◦ φ of
X can be covered by maps of X̃. Let L(θg ◦ φ) be the set of all such
liftings of θg ◦ φ and let L(φ) be the disjoint union of the collection
{L(θg ◦ φ)|g ∈ G}. Clearly, L(iX) is a subgroup of the group of all
homeomorphisms of X̃.

Definition 1. Two liftings f̃1, f̃2 ∈ L(φ) are said to be conjugate
if there exists l̃ ∈ L(iX) such that f̃2 = l̃ ◦ f̃1 ◦ l̃−1. The equivalence
classes by conjugacy are called G-lifting classes and the G-lifting classes
of f̃ is denoted by [f̃ ]G. If L′(φ) is the set of all G-lifting classes, then
RG(φ) = |L′(φ)|, the order of L′(φ), is called the Reidemeister number
of φ.

Theorem 2. If two maps φ1, φ2 : X → X are G-homotopic, then
RG(φ1) = RG(φ2).

Proof. Let H : X × I → X be a G-homotopy from φ1 to φ2. If
f̃ ∈ L(θg ◦ φ1), then (p ◦ f̃)(x̃) = (θg ◦ φ1)(p(x̃)) = (θg ◦ H)(p(x̃), 0)
for all x̃ ∈ X̃. Since X̃ × I is connected, there exists a unique lifting
F̃ : X̃×I → X̃ of θg◦H such that F̃ (·, 0) = f̃ and p◦F̃ = θg◦H◦(p×iI).
Let F̃ (·, 1) = f ′. Since f ′ ∈ L(θg ◦ φ2), we have a function Φg :
L(θg ◦ φ1) → L(θg ◦ φ2) defined by Φg(f̃) = f ′.

Claim 1. Φg is one-to-one: Let f̃1 and f̃2 be distinct elements of
L(θg ◦φ1) and let F̃1 and F̃2 be the liftings of θg ◦H such that F̃ (·, 0) =
f̃1 and F̃2(·, 0) = f̃2. If F̃1(x̃0, 1) = F̃2(x̃0, 1), then F̃1 = F̃2. This is a
contradiction. Thus Φg(f̃1) = F̃1(·, 1) 6= F̃2(·, 1) = Φg(f̃2).
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Claim 2. Φg is onto: Let f ′ ∈ L(θg◦φ2). If we define H ′ : X×I → X
by H ′(x, t) = H(x, 1− t) for (x, t) ∈ X × I, then θg ◦H ′ is a homotopy
from θg ◦ φ2 to θg ◦ φ1. Let F̃ ′ : X̃ × I → X̃ be the lifting of θg ◦ H ′

with F̃ ′(·, 0) = f ′. Define F̃ : X̃ × I → X̃ by F̃ (x̃, t) = F̃ ′(x̃, 1− t) for
(x̃, t) ∈ X̃×I. Since p◦ F̃ (x̃, t) = p◦ F̃ ′(x̃, 1−t) = θg ◦H ′(p(x̃), 1−t) =
θg ◦H(p(x̃), t) for (x̃, t) ∈ X̃ × I and F̃ (x̃, 0) ∈ L(θg ◦ φ1), we have F̃

is the lifting of θg ◦H such that F̃ (x̃, 1) = f ′ = Φg(F̃ (x̃, 0)).
Let Φ : L(φ1) → L(φ2) be the function whose restriction to L(θg◦φ1)

is equal to Φg for every g ∈ G. By Claim 1 and Claim 2, Φ is one-to-one
and onto.

Claim 3. For any l̃ ∈ L(iX) and any f̃ ∈ L(φ1), Φ(f̃ ◦ l̃) = Φ(f̃) ◦ l̃

and Φ(l̃ ◦ f̃) = l̃ ◦ Φ(f̃): Assume l̃ ∈ L(θg′ ◦ iX) and f̃ ∈ L(θg ◦ φ1).
Clearly, f̃ ◦ l̃ ∈ L(θgg′ ◦ φ1). Let F̃ and K̃ be the liftings of θg ◦H and
θgg′ ◦H, respectively, such that F̃ (·, 0) = f̃ and K̃(·, 0) = f̃ ◦ l̃. Define
F̃ ′ : X̃ × I → X̃ by F̃ ′(x̃, t) = F̃ (l̃(x̃), t) for (x̃, t) ∈ X̃ × I. Because H

is a G-homotopy, F̃ ′ is the lifting of θgg′ ◦H with F̃ ′(·, 0) = f̃ ◦ l̃. By the
uniqueness of lifting, F̃ ′ = K̃. Therefore, Φ(f̃ ◦ l̃) = K̃(·, 1) = F̃ ′(·, 1) =
F̃ (l̃(·), 1) = Φ(f̃) ◦ l̃. Similarly, we can prove Φ(l̃ ◦ f̃) = l̃ ◦ Φ(f̃).

Now, assume that for f̃1, f̃2 ∈ L(φ1), f̃2 = l̃ ◦ f̃1 ◦ l̃−1. By Claim
3, Φ(f̃2) = Φ(l̃ ◦ f̃1 ◦ l̃−1) = l̃ ◦ Φ(f̃1 ◦ l̃−1) = l̃ ◦ Φ(f̃1) ◦ l̃−1. Thus Φ
induces a one-to-one onto function from L′(φ1) to L′(φ2), and hence
we have RG(φ1) = RG(φ2). �

Lemma 3. For any fixed f̃0 ∈ L(θg0 ◦ φ), there exists a function

Ψ : L(φ) → L(iX) induced by f̃0 such that Ψ(l̃ ◦ f̃0) = l̃ for every

l̃ ∈ L(iX).

Proof. Assume f̃ ∈ L(θg ◦φ). Since (θgg−1
0
◦p)(f̃0(x̃0)) = (p◦ f̃)(x̃0),

there exists a unique map l̃ ∈ L(θgg−1
0
◦iX) such that l̃(f̃0(x̃0)) = f̃(x̃0).

Obviously, l̃◦f̃0 ∈ L(θg◦φ). By the uniqueness of lifting, l̃◦f̃0 = f̃ . This
induces a function Ψg : L(θg ◦φ) → L(θgg−1

0
◦ iX) defined by Ψg(f̃) = l̃,

and hence we have a function Ψ : L(φ) → L(iX) whose restriction to
L(θg ◦φ) is equal to Ψg for every g ∈ G. Now, let l̃ ∈ L(θg′ ◦ iX). Then
Ψ(l̃ ◦ f̃0) ∈ L(θg′g0g−1

0
◦ iX) = L(θg′ ◦ iX) because l̃ ◦ f̃0 ∈ L(θg′g0 ◦ φ).

Since l̃ ◦ f̃0 = Ψ(l̃ ◦ f̃0) ◦ f̃0, we have Ψ(l̃ ◦ f̃0) = l̃. �
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Lemma 4. Let f̃ ∈ L(φ) be fixed. Then there exists a homomor-

phism f̃# : L(iX) → L(iX) induced by f̃ .

Proof. By the above lemma, there exists a function Ψ : L(φ) →
L(iX) induced by f̃ such that Ψ(f̃ ◦ l̃) ◦ f̃ = f̃ ◦ l̃ for every l̃ ∈ L(iX).
This induces a homomorphism f̃# : L(iX) → L(iX) defined by f̃#(l̃) =
Ψ(f̃ ◦ l̃). In fact, if l̃1, l̃2 ∈ L(iX), then

Ψ(f̃ ◦ (l̃1 ◦ l̃2)) = Ψ((f̃ ◦ l̃1) ◦ l̃2)

= Ψ(Ψ(f̃ ◦ l̃1) ◦ (f̃ ◦ l̃2))

= Ψ(Ψ(f̃ ◦ l̃1) ◦Ψ(f̃ ◦ l̃2) ◦ f̃)

= (Ψ(f̃ ◦ l̃1) ◦Ψ(f̃ ◦ l̃2)),

so f̃#(l̃1 ◦ l̃2) = Ψ(f̃ ◦ (l̃1 ◦ l̃2)) = Ψ(f̃ ◦ l̃1)◦Ψ(f̃ ◦ l̃2) = f̃#(l̃1)◦ f̃#(l̃2).�

Theorem 5. For any two l̃1, l̃2 ∈ L(iX), set l̃1 ∼ l̃2 if there exists

an l̃ ∈ L(iX) such that l̃2 = l̃ ◦ l̃1 ◦ f̃#(l̃−1). This is an equivalence

relation on L(iX). Let [l̃]f̃ be the equivalence class of l̃. If L′(iX) is

the set of all equivalence classes, then RG(φ) = |L′(iX)|.

Proof. Define Ψ′ : L(iX) → L(φ) by Ψ′(l̃) = l̃◦f̃ for l̃ ∈ L(iX). Since
(Ψ◦Ψ′)(l̃) = Ψ(l̃◦ f̃) = l̃ for l̃ ∈ L(iX) and (Ψ′◦Ψ)(f ′) = Ψ(f ′)◦ f̃ = f ′

for f ′ ∈ L(φ), the map Ψ is one-to-one and onto.
Let l̃1, l̃2 ∈ L(iX). Then [l̃1 ◦ f̃ ]G = [l̃2 ◦ f̃ ]G if and only if there

exists an l̃ ∈ L(iX) such that

l̃2 ◦ f̃ = l̃ ◦ (l̃1 ◦ f̃) ◦ l̃−1

= (l̃ ◦ l̃1) ◦ (f̃ ◦ l̃−1)

= (l̃ ◦ l̃1) ◦ (f̃#(l̃−1) ◦ f̃)

if and only if l̃2 = l̃ ◦ l̃1 ◦ f̃#(l̃−1) if and only if [l̃2]f̃ = [l̃1]f̃ . Thus Ψ
induces a one-to-one correspondence between L′(φ) and L′(iX). �

In [4], F. Rhodes defined the fundamental group σ(X, x0, G) of a G-
space X, which is a generalization of the concept of the fundamental
group of a topological space.
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Lemma 6. L(iX) is isomorphic to σ(X, x0, G)

Proof. For any l̃ ∈ L(θg ◦ iX) ⊂ L(iX), choose a path γ̃ in X̃ from
x̃0 to l̃(x̃0). Define ι : L(iX) → σ(X, x0, G) by ι(l̃) = [pγ̃; g]. Since X̃ is
simply connected, ι is well defined. To show that ι is a homomorphism,
let l̃1 ∈ L(θg1 ◦ iX) and l̃2 ∈ L(θg2 ◦ iX). If γ̃1 and γ̃2 are paths from x̃0

to l̃1(x̃0) and l̃2(x̃0), respectively, then l̃2◦ γ̃1 is a path in X̃ from l̃2(x̃0)
to (l̃2◦ l̃1)(x̃0) and p(l̃2◦γ̃1) = g2(p◦γ̃1). Thus, if γ̃3 is a path from x̃0 to
(l̃2◦ l̃1)(x̃0), we have ι(l̃2◦ l̃1) = [p◦ γ̃3; g2g1] = [p◦ γ̃2∗g2(p◦ γ̃1); g2g1] =
[p ◦ γ̃2; g2] ∗ [p ◦ γ̃1; g1]. This shows that ι is a homomorphism.

Now, consider the following diagram

0 → π1(X, x0) → L(iX) → G → 0
↓ ι ↓ ↓

0 → π1(X, x0) → σ(X, x0, G) → G → 0,

where each map is defined naturally. It is easy to show that each
square is commutative and each low is exact. By the five lemma, ι is
an isomorphism. �

Let φ# = ι ◦ f̃# ◦ ι−1. Then φ# is a homomorphism of σ(X, x0, G).
By Lemma 6, It is possible to restate Theorem 5 as follows:

Theorem 7. For any two [α1; g1], [α2; g2] ∈ σ(X, x0, G), set
[α1; g1] ∼ [α2; g2] if there exists a [β;h] ∈ σ(X, x0, G) such that
[α2; g2] = [β;h] ∗ [α1; g1] ∗ φ#([β;h]−1). This is an equivalence rela-
tion on σ(X, x0, G) and the order of the set of equivalence classes is
equal to RG(φ).

Theorem 8. If σ(X, x0, G) is abelian, then the subset N = {[β;h]∗
φ#([β;h]−1)|[β;h] ∈ σ(X, x0, G)} is a normal subgroup of σ(X, x0, G)
and RG(φ) = |σ(X, x0, G)/N |.

Proof. It is clear that N is a subgroup of σ(X, x0, G), and hence
normal. Let [α; g] ∈ σ(X, x0, G). From the fact that

{[β;h] ∗ [α; g] ∗ φ#([β;h]−1)|[β;h] ∈ σ(X, x0, G)}
={[α;h] ∗ ([β; g] ∗ φ#([β;h]−1))|[β;h] ∈ σ(X, x0, G)}
=[α; g] ∗N,
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we have

RG(φ) = |{[α; g] ∗N |[α; g] ∈ σ(X, x0, G)}| = |σ(X, x0, G)/N |. �

Definition 9. ([3]) Let f : G → G be a group homomorphism. If
there exists a positive integer n such that fn(G) is abelian, then f is
said to be eventually commutative.

Clearly, every homomorphism of an abelian group is eventually com-
mutative.

Definition 10. ([3]) For any group (G, ·) and any homomorphism
f : G → G, the Reidemeister operator of f on G is the left action of G
on itself given by

(g1, g2) → g1 · g2 · f(g−1
1 ).

We write the set of orbits of the operation as Coker(iG · f ′) with
elements < g > for g ∈ G.

Lemma 11. ([3]) Let q : A → B be a surjective homomorphism. If
the diagram

A
f→ A

q ↓ q ↓
B

g→ B

of groups and homomorphisms is commutative, then |Coker(iA ◦f)| ≥
|Coker(iB · g)|.

Lemma 12. Let iσ be the identity on σ(X, x0, G). Then RG(φ) =
|Coker(iσ · φ′#)|.

Proof. If j : σ(X, x0, G) → Coker(iσ · φ′#) is the function defined
by j([α; g]) =< [α; g] > for [α; g] ∈ σ(X, x0, G), then j([α1; g1]) =
j([α2; g2]) if and only if there exists a [β;h] ∈ σ(X, x0, G) such that
[α2; g2] = [β;h] ∗ [α1; g1] ∗ φ#([β;h]−1). By Theorem 7, the desired
result follows. �
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Theorem 13. Let H1(φ#) : H1(σ(X, x0, G)) → H1(σ(X, x0, G))
be the homomorphism induced by φ# : σ(X, x0, G) → σ(X, x0, G),
where H1 is the first integral homology functor from groups to abelian
groups. Then

RG(φ) ≥ |Coker(iH1(σ) ·H1(φ#)′)|,

where iH1(σ) is the identity on H1(σ(X, x0, G)). Furthermore, if φ# is
eventually commutative, then

RG(φ) = |coker(iH1(σ) ·H1(φ#)′)|.

Proof. Let q : σ(X, x0, G) → H1(σ(X, x0, G)) be the natural pro-
jection. Since the following diagram commutes

σ(X, x0, G)
φ#−→ σ(X, x0, G)

q ↓ q ↓
H1(σ(X, x0, G))

H1(φ#)−→ H1(σ(X, x0, G)),

we have, by Lemma 11 and Lemma 12,

RG(φ) = |Coker(iσ · φ′#)| ≥ |Coker(iH1(σ) ·H1(φ#)′)|.

In the case φ# is eventually commutative, the result follows from Corol-
lary 1.15 of [3]. �

Remark. It is well-known that for a group G, H1(G) is isomorphic
to G/G′ where G′ is the commutator subgroup of G. Thus, in the above
theorem, H1(σ(X, x0, G)) and Coker(iH1(σ) ·H1(φ#)′) can be replaced
by σ(X, x0, G)/σ′(X, x0, G) and Coker(iσ/σ′ · (φ̄#)′), respectively,
where iσ/σ′ is the identity homomorphism on σ(X, x0, G)/σ′(X, x0, G)
and φ̄# is the homomorphism of σ(X, x0, G)/σ′(X, x0, G) induced by
φ#.

Theorem 14. If N = {[α; g] ∗ φ#([α; g]−1)|[α; g] ∈ σ(X, x0, G)},
then

RG(φ) ≥ |Coker(iH1(σ) ·H1(φ#)′)| = |σ(X, x0, G)/σ′(X, x0, G)N |.
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Proof. By the same method as in the proof of Lemma 5 in [2],
we can prove that σ′(X, x0, G)N is a normal subgroup of σ(X, x0, G).
Consider the commutative diagram in the proof of Theorem 13 and the
composition η ◦ q

σ(X, x0, G)
q→ H1(σ(X, x0, G))

η→ Coker(iH1(σ) ·H1(φ#)′),

where η is the natural projection (Note that Coker(iH1(σ) ·H1(φ#)′) is
a group because H1(σ(X, x0, G)) is abelian). Since η ◦ q is an epimor-
phism, Coker(iH1(σ) ·H1(φ#)′) is isomorphic to σ(X, x0, G)/Ker(η◦q).
Now, applying the method used in the proof of Theorem 3 in [2], we
have Ker(η ◦ q) = σ′(X, x0, G)N . Therefore, we obtain the desired
result. �
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