• Title/Summary/Keyword: G-F1

Search Result 4,237, Processing Time 0.026 seconds

RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf - (m - 1)r)-GRAPHS

  • Zhou, Sizhong;Zong, Minggang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1613-1622
    • /
    • 2008
  • Let G be a graph with vertex set V(G) and edge set E(G), and let g, f be two nonnegative integer-valued functions defined on V(G) such that $g(x)\;{\leq}\;f(x)$ for every vertex x of V(G). We use $d_G(x)$ to denote the degree of a vertex x of G. A (g, f)-factor of G is a spanning subgraph F of G such that $g(x)\;{\leq}\;d_F(x)\;{\leq}\;f(x)$ for every vertex x of V(F). In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let F = {$F_1$, $F_2$, ..., $F_m$} be a factorization of G and H be a subgraph of G with mr edges. If $F_i$, $1\;{\leq}\;i\;{\leq}\;m$, has exactly r edges in common with H, we say that F is r-orthogonal to H. If for any partition {$A_1$, $A_2$, ..., $A_m$} of E(H) with $|A_i|=r$ there is a (g, f)-factorization F = {$F_1$, $F_2$, ..., $F_m$} of G such that $A_i\;{\subseteq}E(F_i)$, $1\;{\leq}\;i\;{\leq}\;m$, then we say that G has (g, f)-factorizations randomly r-orthogonal to H. In this paper it is proved that every (0, mf - (m - 1)r)-graph has (0, f)-factorizations randomly r-orthogonal to any given subgraph with mr edges if $f(x)\;{\geq}\;3r\;-\;1$ for any $x\;{\in}\;V(G)$.

Morphological, Cytological and Molecular Evidence for Intersubgeneric F1 Hybrid between Glycine max x G. tomentella (콩 Glycine max와 G. tomentella의 종간교잡으로부터 얻은 Fl식물체 검증을 위한 형태적 · 세포학적 · 분자유전학적 연구)

  • Choi, In-Soo;Kim, Yong-Chul
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.454-460
    • /
    • 2008
  • This study was carried out to demonstrate morphological, cytological and molecular evidence for intersubgeneric $F_1$ hybrid between Glycine tomentella and G. max cv. ‘Baemkong’. Morphological features of $F_1$ plant for pistil and stamen, flower color and growth habit showed intermediate type between G. tomentella and G. max cv. ‘Baemkong’. Chromosome number of $F_1$ plant was 2n=39, which explained the evidence of $F_1$ hybrid between G. tomentella (2n=38) and G. max cv. ‘Baemkong’ (2n=40). Polyacrylamide isoelectric focusing pattern for esterase and peroxidase also showed that the $F_1$ plant was true $F_1$ hybrid between G. tomentella and G. max cv. ‘Baemkong’. From RAPD analysis, we identified that 62 primers showing bands in $F_1$ hybrid had both bands from G. tomentella and G. max cv. ‘Baemkong’, which suggested that this was true $F_1$ hybrid. Based on our results from morphological, cytological and molecular analyses, we suggest that the $F_1$ plant was true intersubgeneric hybrid between G. tomentella and G. max cv. ‘Baemkong’. Our results still remain us further study to recover fertility of $F_1$ hybrids. The occurrence of maternal and/or paternal inheritance in $F_1$ hybrid from intersubgeneric cross between G. tomentella and G. max cv. ‘Baemkong’ need to be explained.

A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS

  • Chung, Bo-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1315-1322
    • /
    • 2010
  • Let D be a plane domain whose boundary consists of n components and $C_1$, $C_2$ two boundary components of D. We consider the family $F_1$ of conformal mappings f satisfying f(D) $\subset$ {1 < |w| < ${\mu}(f)$}, $f(C_1)=\{|w|=1\}$, $f(C_2)=\{|w|={\mu}(f)\}$. There are conformal mappings $g_0$, $g_1({\in}F_1)$ onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$\{{\mu}(f)|f\;{\in}\;F_1\}=\{\mu|\mu(g_1)\;{\leq}\;{\mu}\;{\leq}\;{\mu}(g_0)\}$$. And we consider the family $F_n$ of conformal mappings $\tilde{f}$ from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, {$\mu|1$ < ${\mu}\;{\leq}\;{\mu}(g_1)$} ${\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_2\}\;{\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_n\}$ and ${\mu}(\tilde{f})\;{\leq}\;{\mu}(g_0)^n$.

On the fixed-point theorems on the infrasolvmanifolds

  • Chun, Dae-Shik;Jang, Chan-Gyu;Lee, Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.681-688
    • /
    • 1995
  • Fixed-point theory has an extension to coincidences. For a pair of maps $f,g:X_1 \to X_2$, a coincidence of f and g is a point $x \in X_1$ such that $f(x) = g(x)$, and $Coin(f,g) = {x \in X_1 $\mid$ f(x) = g(x)}$ is the coincidence set of f and g. The Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) are used to estimate the cardinality of Coin(f,g). The aspherical manifolds whose fundamental group has a normal solvable subgroup of finite index is called infrasolvmanifolds. We show that if $M_1,M_2$ are compact connected orientable infrasolvmanifolds, then $N(f,g) \geq $\mid$L(f,g)$\mid$$ for every $f,g : M_1 \to M_2$.

  • PDF

THE CLASSIFICATION OF COMPLETE GRAPHS $K_n$ ON f-COLORING

  • ZHANG XIA;LIU GUIZHEN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.127-133
    • /
    • 2005
  • An f-coloring of a graph G = (V, E) is a coloring of edge set E such that each color appears at each vertex v $\in$ V at most f(v) times. The minimum number of colors needed to f-color G is called the f-chromatic index $\chi'_f(G)$ of G. Any graph G has f-chromatic index equal to ${\Delta}_f(G)\;or\;{\Delta}_f(G)+1,\;where\;{\Delta}_f(G)\;=\;max\{{\lceil}\frac{d(v)}{f(v)}{\rceil}\}$. If $\chi'_f(G)$= ${\Delta}$f(G), then G is of $C_f$ 1 ; otherwise G is of $C_f$ 2. In this paper, the classification problem of complete graphs on f-coloring is solved completely.

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin;Yu, Haifeng;Zhang, Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2016
  • A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.

SOME PROPERTIES ON f-EDGE COVERED CRITICAL GRAPHS

  • Wang, Jihui;Hou, Jianfeng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.357-366
    • /
    • 2007
  • Let G(V, E) be a simple graph, and let f be an integer function on V with $1{\leq}f(v){\leq}d(v)$ to each vertex $v{\in}V$. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex $v{\in}V$ at least f(v) times. The f-edge cover chromatic index of G, denoted by ${\chi}'_{fc}(G)$, is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has an f-edge cover chromatic index equal to ${\delta}_f\;or\;{\delta}_f-1,\;where\;{\delta}_f{=}^{min}_{v{\in}V}\{\lfloor\frac{d(v)}{f(v)}\rfloor\}$. Let G be a connected and not complete graph with ${\chi}'_{fc}(G)={\delta}_f-1$, if for each $u,\;v{\in}V\;and\;e=uv{\nin}E$, we have ${\chi}'_{fc}(G+e)>{\chi}'_{fc}(G)$, then G is called an f-edge covered critical graph. In this paper, some properties on f-edge covered critical graph are discussed. It is proved that if G is an f-edge covered critical graph, then for each $u,\;v{\in}V\;and\;e=uv{\nin}E$ there exists $w{\in}\{u,v\}\;with\;d(w)\leq{\delta}_f(f(w)+1)-2$ such that w is adjacent to at least $d(w)-{\delta}_f+1$ vertices which are all ${\delta}_f-vertex$ in G.

RADIO AND RADIO ANTIPODAL LABELINGS FOR CIRCULANT GRAPHS G(4k + 2; {1, 2})

  • Nazeer, Saima;Kousar, Imrana;Nazeer, Waqas
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.173-183
    • /
    • 2015
  • A radio k-labeling f of a graph G is a function f from V (G) to $Z^+{\cup}\{0\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}k+1$ for every two distinct vertices x and y of G, where d(x, y) is the distance between any two vertices $x,y{\in}G$. The span of a radio k-labeling f is denoted by sp(f) and defined as max$\{{\mid}f(x)-f(y){\mid}:x,y{\in}V(G)\}$. The radio k-labeling is a radio labeling when k = diam(G). In other words, a radio labeling is an injective function $f:V(G){\rightarrow}Z^+{\cup}\{0\}$ such that $${\mid}f(x)=f(y){\mid}{\geq}diam(G)+1-d(x,y)$$ for any pair of vertices $x,y{\in}G$. The radio number of G denoted by rn(G), is the lowest span taken over all radio labelings of the graph. When k = diam(G) - 1, a radio k-labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f:V(G){\rightarrow}\{0,1,2,{\ldots}\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}diam(G)$ holds for all $x,y{\in}G$. The radio antipodal number for G denoted by an(G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs G(4k + 2; {1, 2}).

Odd Harmonious and Strongly Odd Harmonious Graphs

  • Seoud, Mohamed Abdel-Azim;Hafez, Hamdy Mohamed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.747-759
    • /
    • 2018
  • A graph G = (V (G), E(G) of order n = |V (G)| and size m = |E(G)| is said to be odd harmonious if there exists an injection $f:V(G){\rightarrow}\{0,\;1,\;2,\;{\ldots},\;2m-1\}$ such that the induced function $f^*:E(G){\rightarrow}\{1,\;3,\;5,\;{\ldots},\;2m-1\}$ defined by $f^*(uv)=f(u)+f(v)$ is bijection. While a bipartite graph G with partite sets A and B is said to be bigraceful if there exist a pair of injective functions $f_A:A{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ and $f_B:B{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ such that the induced labeling on the edges $f_{E(G)}:E(G){\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ defined by $f_{E(G)}(uv)=f_A(u)-f_B(v)$ (with respect to the ordered partition (A, B)), is also injective. In this paper we prove that odd harmonious graphs and bigraceful graphs are equivalent. We also prove that the number of distinct odd harmonious labeled graphs on m edges is m! and the number of distinct strongly odd harmonious labeled graphs on m edges is [m/2]![m/2]!. We prove that the Cartesian product of strongly odd harmonious trees is strongly odd harmonious. We find some new disconnected odd harmonious graphs.

Class function table matrix of finite groups

  • Park, Won-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.689-695
    • /
    • 1995
  • Let G be a finite group with k distinct conjugacy classes $C_1, C_2, \cdots, C_k$ and F an algebraically closed field such that char$(F){\dag}\left$\mid$ G \right$\mid$$. We denoted by $Irr_F$(G) the set of all irreducible F-characters of G and $Cf_F$(G) the set of all class functions of G into F. Then $Cf_F$(G) is a commutative F-algebra with an F-basis $Irr_F(G) = {\chi_1, \chi_2, \cdots, \chi_k}$.

  • PDF