Browse > Article
http://dx.doi.org/10.5666/KMJ.2018.58.4.747

Odd Harmonious and Strongly Odd Harmonious Graphs  

Seoud, Mohamed Abdel-Azim (Department of Mathematics, Faculty of Science, Ain Shams University)
Hafez, Hamdy Mohamed (Department of Basic science, Faculty of Computers and Information, Fayoum University)
Publication Information
Kyungpook Mathematical Journal / v.58, no.4, 2018 , pp. 747-759 More about this Journal
Abstract
A graph G = (V (G), E(G) of order n = |V (G)| and size m = |E(G)| is said to be odd harmonious if there exists an injection $f:V(G){\rightarrow}\{0,\;1,\;2,\;{\ldots},\;2m-1\}$ such that the induced function $f^*:E(G){\rightarrow}\{1,\;3,\;5,\;{\ldots},\;2m-1\}$ defined by $f^*(uv)=f(u)+f(v)$ is bijection. While a bipartite graph G with partite sets A and B is said to be bigraceful if there exist a pair of injective functions $f_A:A{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ and $f_B:B{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ such that the induced labeling on the edges $f_{E(G)}:E(G){\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ defined by $f_{E(G)}(uv)=f_A(u)-f_B(v)$ (with respect to the ordered partition (A, B)), is also injective. In this paper we prove that odd harmonious graphs and bigraceful graphs are equivalent. We also prove that the number of distinct odd harmonious labeled graphs on m edges is m! and the number of distinct strongly odd harmonious labeled graphs on m edges is [m/2]![m/2]!. We prove that the Cartesian product of strongly odd harmonious trees is strongly odd harmonious. We find some new disconnected odd harmonious graphs.
Keywords
odd harmonious graphs; labeling; cartesian product;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Abrham, Existence theorems for certain types of graceful valuations of snakes, Congr. Numer., 93(1993), 17-22.
2 B. D. Acharya, and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299.   DOI
3 B. D. Acharya, and S. M. Hegde, On certain vertex valuations of a graph I, Indian J. Pure Appl. Math., 22(1991), 553-560.
4 M. Burzio, and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Math., 181(1998), 275-281.   DOI
5 J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 20:Ds6(2017).
6 J. A. Gallian, and L. A. Schoenhard, Even harmonious graphs, AKCE Int. J. Graphs Comb., 11(1)(2014), 27-49.
7 R. B. Gnanajothi, Topics in graph theory, Ph. D. Thesis, Madurai Kamaraj University, 1991.
8 K. M. Koh, T. Tan, and D. G. Rogers, Two theorems on graceful trees, Discrete Math., 25(1979), 141-148.   DOI
9 A. Liado, and S. C. Lopez, Edge-decompositions of $K_{n,n}$ into isomorphic copies of a given tree, J. Graph Theory, 48(2005), 1-18.   DOI
10 Z. H. Liang, On Odd Arithmetic Graphs, J. Math. Res. Exposition, 28(3)(2008), 706-712.
11 A. Rosa, On certain valuations of the vertices of a graph, Theory Graphs, Int. Symp. Rome, (1966), 349-355.
12 Z. H. Liang, and Z. L. Bai, On the odd harmonious graphs with applications, J. Appl. Math. Comput., 29(2009), 105-116.   DOI
13 T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A, 120(5)(2013), 984-997.   DOI
14 P. B. Sarasija, and R. Binthiya, Even harmonious graphs with applications, International journal of computer science and information security, 9(7)(2011), 161-163.
15 G. A. Saputri, K. A. Sugeng, and D. Froncek, The odd harmonious labeling of dumbbell and generalized prism graphs, AKCE Int. J. Graphs Comb., 10(2013), 221-228.