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RANDOMLY ORTHOGONAL FACTORIZATIONS OF
(0, mf − (m − 1)r)-GRAPHS

Sizhong Zhou and Minggang Zong

Abstract. Let G be a graph with vertex set V (G) and edge set E(G),
and let g, f be two nonnegative integer-valued functions defined on V (G)

such that g(x) ≤ f(x) for every vertex x of V (G). We use dG(x) to denote
the degree of a vertex x of G. A (g, f)-factor of G is a spanning subgraph
F of G such that g(x) ≤ dF (x) ≤ f(x) for every vertex x of V (F ). In

particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-
factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors.
Let F = {F1, F2, . . . , Fm} be a factorization of G and H be a subgraph of
G with mr edges. If Fi, 1 ≤ i ≤ m, has exactly r edges in common with H,

we say that F is r-orthogonal to H. If for any partition {A1, A2, . . . , Am}
of E(H) with |Ai| = r there is a (g, f)-factorization F = {F1, F2, . . . , Fm}
of G such that Ai ⊆ E(Fi), 1 ≤ i ≤ m, then we say that G has (g, f)-
factorizations randomly r-orthogonal to H. In this paper it is proved

that every (0, mf − (m − 1)r)-graph has (0, f)-factorizations randomly
r-orthogonal to any given subgraph with mr edges if f(x) ≥ 3r − 1 for
any x ∈ V (G).

1. Introduction

In this paper we consider finite undirected simple graphs. Let G be a graph
with vertex set V (G) and edge set E(G). The degree of a vertex x is denoted
by dG(x). Let g and f be two nonnegative integer-valued functions defined on
V (G) such that g(x) ≤ f(x) for every vertex x of V (G). Then a (g, f)-factor of
G is a spanning subgraph F of G satisfying that g(x) ≤ dF (x) ≤ f(x) for every
vertex x of V (F ). In particular, G is called a (g, f)-graph if G itself is a (g, f)-
factor. A subgraph H of G is called an m-subgraph if H has m edges in total.
A (g, f)-factorization F = {F1, F2, . . . , Fm} of a graph G is a partition of E(G)
into edge-disjoint (g, f)-factors F1, F2, . . . , Fm. If g(x) = a and f(x) = b, where
a and b are nonnegative integers, then a (g, f)-factorization of G is called an
[a, b]-factorization of G. Let H be an mr-subgraph of G. A (g, f)-factorization
F = {F1, F2, . . . , Fm} is r-orthogonal to H if |E(H)∩E(Fi)| = r for 1 ≤ i ≤ m.
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If for any partition {A1, A2, . . . , Am} of E(H) with |Ai| = r there is a (g, f)-
factorization F = {F1, F2, . . . , Fm} of G such that Ai ⊆ E(Fi), 1 ≤ i ≤ m,
then we say that G has (g, f)-factorizations randomly r-orthogonal to H. Other
definitions and terminologies can be found in [1].

Recently Tokuda [9] studied the connected factors in K1,n-free graphs con-
taining an [a, b]-factor. Kano [3] obtained some sufficient conditions for a
graph to have [a, b]-factorizations. Liu [5, 6] proved that every (mg + m −
1,mf −m+1)-graph has a (g, f)-factorization orthogonal to a star or a match-
ing. Liu [7] showed that every bipartite (mg + m − 1,mf − m + 1)-graph
has (g, f)-factorizations randomly k-orthogonal to any km-subgraph. Feng [2]
proved that every (0,mf − m + 1)-graph has a (0, f)-factorization orthogonal
to any given m-subgraph. Now we consider the r-orthogonal factorizations of
graphs. The purpose of this paper is to prove that for any mr-subgraph H
of (0,mf − (m − 1)r)-graph G, there exist (0, f)-factorizations of G which are
randomly r-orthogonal to H, where f(x) ≥ 3r − 1 for each x ∈ V (G). In the
following we give the main theorem in this paper.

Theorem 1. Let G be a (0,mf − (m − 1)r)-graph, and let f be an integer-
valued function defined on V (G) such that f(x) ≥ 3r − 1 for all x ∈ V (G),
and let H be an mr-subgraph of G. Then G has a (0, f)-factorization randomly
r-orthogonal to H.

2. Preliminary results

Let S and T be two disjoint subsets of V (G). We denote by EG(S, T ) the set
of edges with one end in S and the other in T , and by eG(S, T ) the cardinality
of EG(S, T ). For S ⊂ V (G) and A ⊂ E(G), G−S is a subgraph obtained from
G by deleting the vertices in S together with the edges to which the vertices
in S incident, and G−A is a subgraph obtained from G by deleting the edges
in A, and G[S] (rep. G[A]) is a subgraph of G induced by S (rep. A). For a
subset X of V (G), we write f(X) =

∑
x∈X f(x) for any function f defined on

V (G), and define f(∅) = 0. Especially, dG(X) =
∑

x∈X dG(x).
Let g and f be two nonnegative integer-valued functions defined on V (G),

and C a component (i.e., a maximal connected subgraph) of G − (S ∪ T ).
If there is a vertex x ∈ V (C) such that g(x) ̸= f(x), we call C a neutral
component; otherwise, i.e., g(x) = f(x) for all x ∈ V (C), then we call C an
even or odd component according to whether eG(T, V (C)) + f(C) is even or
odd. We denoted by hG(S, T ) the number of the odd components of G−(S∪T ).
In 1970 Lovász [8] used the symbol δG(S, T ; g, f) for the expression dG−S(T )−
g(T ) − hG(S, T ) + f(S), and found that δG(S, T ; g, f) ≥ 0 is a necessary and
sufficient condition for a graph G to have a (g, f)-factor.

Lemma 2.1 ([8]). Let G be a graph, and g and f be two integer-valued func-
tions defined on V (G) such that g(x) ≤ f(x) for each x ∈ V (G). Then G has
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a (g, f)-factor if and only if

δG(S, T ; g, f) ≥ 0

for any two disjoint subsets S and T of V (G).

Note that if g(x) < f(x) for all x ∈ V (G), then all components of G−(S∪T )
are neutral. Hence for any two disjoint subsets S and T of V (G), hG(S, T ) = 0
provided g(x) < f(x) for all x ∈ V (G). Thus in the following δG(S, T ; g, f) =
dG−S(T ) − g(T ) + f(S) for any two disjoint subsets S and T of V (G).

Let S and T be two disjoint subsets of V (G), and E1 and E2 be two disjoint
subsets of E(G). Let D = V (G) − (S ∪ T ), and

E(S) = {xy ∈ E(G) : x, y ∈ S}, E(T ) = {xy ∈ E(G) : x, y ∈ T},

E′
1 = E1 ∩ E(S), E′′

1 = E1 ∩ EG(S,D),
E′

2 = E2 ∩ E(T ), E′′
2 = E2 ∩ EG(T,D),

rS(E1) = 2|E′
1| + |E′′

1 |, rT (E2) = 2|E′
2| + |E′′

2 |.
It is easily seen that rS(E1) ≤ dG−T (S), rT (E2) ≤ dG−S(T ).

The following lemma has been obtained independently by Yuan and Yu [10]
and Li and Liu [4], respectively.

Lemma 2.2 ([4, 10]). Let G be a graph, and g and f be two nonnegative
integer-valued functions defined on V (G) such that 0 ≤ g(x) < f(x) for all
x ∈ V (G), and E1 and E2 be two disjoint subsets of E(G). Then G has a
(g, f)-factor F such that E1 ⊆ E(F ) and E2 ∩ E(F ) = ∅ if and only if

δG(S, T ; g, f) = dG−S(T ) − g(T ) + f(S) ≥ rS(E1) + rT (E2)

for any two disjoint subsets S and T of V (G).

Lemma 2.3 ([2]). Let G be a (0,mf −m + 1)-graph, and let f be one integer-
valued function defined on V (G) such that f(x) ≥ 0, and let H be an m-
subgraph of G. Then G has a (0, f)-factorization orthogonal to H.

In the following, we always assume that G is a (0,mf − (m − 1)r)-graph,
where m ≥ 1 and r ≥ 1 are two integers. Define

g(x) = max{0, dG(x) − ((m − 1)f(x) − (m − 2)r)},

M1 (x) =
1
m

dG(x) − g(x),

M2 (x) = f(x) − 1
m

dG(x).

By the definitions of g(x), M1 (x) and M2 (x), we have the following lemma.

Lemma 2.4. For all x ∈ V (G), the following inequalities hold:
(1) If m ≥ 2, then 0 ≤ g(x) < f(x),
(2) If g(x) = dG(x) − ((m − 1)f(x) − (m − 2)r), then M1 (x) ≥ r

m ,
(3) M2 (x) ≥ (m−1)r

m .
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Proof. (1) Note that G is a (0,mf − (m − 1)r)-graph, where m ≥ 2 is an
integer. Then 0 ≤ mf − (m − 1)r implies that f(x) ≥ (m−1)r

m . Note that f(x)
is a nonnegative integer-valued function. Then f(x) ≥ 1.

If g(x) = 0, then 0 ≤ g(x) < f(x).
If g(x) = dG(x) − ((m − 1)f(x) − (m − 2)r), then

f(x) − g(x) = f(x) − dG(x) + (m − 1)f(x) − (m − 2)r
= mf(x) − (m − 2)r − dG(x)
≥ mf(x) − (m − 2)r − (mf(x) − (m − 1)r) = r ≥ 1.

Hence we obtain that
0 ≤ g(x) < f(x).

(2) If g(x) = dG(x) − ((m − 1)f(x) − (m − 2)r), then

M1 (x) =
1
m

dG(x) − g(x)

=
1
m

dG(x) − [dG(x) − ((m − 1)f(x) − (m − 2)r)]

=
1 − m

m
dG(x) + (m − 1)f(x) − (m − 2)r

≥ 1 − m

m
(mf(x) − (m − 1)r) + (m − 1)f(x) − (m − 2)r

= (1 − m)f(x) + (m − 1)r − (m − 1)r
m

+ (m − 1)f(x) − (m − 2)r

=
r

m
.

(3) Obviously, we have

M2 (x) = f(x) − 1
m

dG(x) ≥ f(x) − 1
m

(mf(x) − (m − 1)r)

= f(x) − f(x) +
(m − 1)r

m
=

(m − 1)r
m

.

This completes the proof. ¤

3. Proof of the main result

In this section, we are going to prove our main theorem.
Let E1 be an arbitrary subset of E(H) with |E1| = r. Put E2 = E(H) \E1.

Then |E2| = (m − 1)r. For any two disjoint subsets S ⊆ V (G) and T ⊆ V (G),
let T0 = {x|x ∈ T, g(x) = 0} and T1 = T \T0, it is easily seen that T = T0 ∪T1

and T0∩T1 = ∅. Let g(x), E′
1, E′′

1 , E′
2, E′′

2 , rS(E1) and rT (E2) be defined as in
Section 2. It follows instantly from the definitions of rS(E1) and rT (E2) that

rS(E1) ≤ min{2r, r|S|},

rT (E2) ≤ min{2(m − 1)r, (m − 1)r|T |},
rT1(E2) ≤ min{2(m − 1)r, (m − 1)r|T1|},
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rT (E2) = rT0(E2) + rT1(E2),
rT0(E2) ≤ dG−S(T0).

The proof of theorem relies heavily on the following lemma.

Lemma 3.1. Let G be a (0,mf−(m−1)r)-graph with m ≥ 2 and f(x) ≥ 3r−1
with r ≥ 2. Then G admits a (g, f)-factor F1 such that E1 ⊆ E(F1) and
E2 ∩ E(F1) = ∅.
Proof. By Lemma 2.2 and Lemma 2.4(1), it suffices to show that for any two
disjoint subsets S and T of V (G), we have

δG(S, T ; g, f) ≥ rS(E1) + rT (E2).

For S and T , we obtain
δG(S, T ; g, f)

= dG−S(T ) − g(T ) + f(S)

= dG−S(T1) − g(T1) + f(S) + dG−S(T0) − g(T0)

≥ dG−S(T1) − g(T1) + f(S) + rT0(E2)

=
1
m

dG(T1) − g(T1) + f(S) − 1
m

dG(S) +
m − 1

m
dG−S(T1)

+
1
m

dG−T1(S) + rT0(E2)

= M1 (T1)+ M2 (S) +
m − 1

m
dG−S(T1) +

1
m

dG−T1(S) + rT0(E2).

By Lemma 2.4, we have

(1)
δG(S, T ; g, f)

≥ r

m
|T1| +

(m − 1)r
m

|S| + m − 1
m

dG−S(T1) +
1
m

dG−T1(S) + rT0(E2).

Now let us distinguish among four cases.
Case 1. S = ∅, T1 = ∅.
Thus we have rS(E1) = 0 and rT1(E2) = 0. In view of (1), we have

δG(S, T ; g, f)

≥ r

m
|T1| +

(m − 1)r
m

|S| + m − 1
m

dG−S(T1) +
1
m

dG−T1(S) + rT0(E2)

= rT0(E2) = rS(E1) + rT1(E2) + rT0(E2) = rS(E1) + rT (E2).

Case 2. S = ∅, T1 ̸= ∅.
Thus we have rS(E1) = 0. By the definition of T1, it is easy to see that

g(x) ≥ 1

for all x ∈ T1.
Note that g(x) = max{0, dG(x)− ((m− 1)f(x)− (m− 2)r)}. For all x ∈ T1,

we have
g(x) = dG(x) − ((m − 1)f(x) − (m − 2)r) ≥ 1.
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Thus, we obtain

(2)

dG(x) ≥ (m − 1)f(x) − (m − 2)r + 1

≥ (m − 1)(3r − 1) − (m − 2)r + 1
= 2mr − m − r + 2

for all x ∈ T1.
In view of (1), (2), m ≥ 2 and r ≥ 2, we have

δG(S, T ; g, f) ≥ r

m
|T1| +

m − 1
m

dG(T1) + rT0(E2)

≥ r

m
|T1| +

m − 1
m

(2mr − m − r + 2)|T1| + rT0(E2)

=
r

m
|T1| + (m − 1)r|T1| +

m − 1
m

(mr − m − r + 2)|T1|

+rT0(E2)

≥ r

m
|T1| + (m − 1)r|T1| +

m − 1
m

[2(m − 1) − m + 2]|T1|

+rT0(E2)

=
r

m
|T1| + (m − 1)r|T1| + (m − 1)|T1| + rT0(E2)

> (m − 1)r|T1| + rT0(E2)
≥ rT1(E2) + rT0(E2) = rT (E2)
= rS(E1) + rT (E2).

Case 3. S ̸= ∅, T1 = ∅.
Thus we have rT1(E2) = 0. According to rT0(E2) ≤ dG−S(T0) and g(T0) = 0,

we obtain

δG(S, T ; g, f) = dG−S(T ) − g(T ) + f(S)
= dG−S(T1) − g(T1) + f(S) + dG−S(T0) − g(T0)
≥ dG−S(T1) − g(T1) + f(S) + rT0(E2)
= f(S) + rT0(E2)
≥ (3r − 1)|S| + rT0(E2)
≥ r|S| + rT0(E2)
≥ rS(E1) + rT0(E2)
= rS(E1) + rT0(E2) + rT1(E2)
= rS(E1) + rT (E2).

Case 4. S ̸= ∅, T1 ̸= ∅.
Note that dG−T1(S) ≥ rS(E1).

Subcase 4.1. |T1| = 1.
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Thus we have

rT1(E2) ≤ min{2(m − 1)r, (m − 1)r|T1|} = (m − 1)r.

In view of (1), (2), m ≥ 2 and r ≥ 2, we have

δG(S, T ; g, f) ≥ r

m
|T1| +

(m − 1)r
m

|S| + m − 1
m

dG−S(T1)

+
1
m

dG−T1(S) + rT0(E2)

=
r

m
|T1| +

(m − 1)(r − 1)
m

|S| + m − 1
m

(dG−S(T1) + |S|)

+
1
m

dG−T1(S) + rT0(E2)

≥ r

m
|T1| +

(m − 1)(r − 1)
m

|S| + 1
m

dG−T1(S)

+
m − 1

m
dG(x) + rT0(E2) (x ∈ T1)

≥ r

m
|T1| +

(m − 1)(r − 1)
m

|S| + 1
m

dG−T1(S)

+
m − 1

m
(2mr − m − r + 2) + rT0(E2)

=
r

m
|T1| +

(m − 1)(r − 1)
m

|S| + 1
m

dG−T1(S)

+ (m − 1)r +
(m − 1)(mr − m − r + 2)

m
+ rT0(E2)

≥ 1
m

dG−T1(S) +
2r(m − 1)

m
+ (m − 1)r +

r

m
+

(m − 1)(r − 1)
m

+
(m − 1)(mr − m − r + 2)

m
− 2r(m − 1)

m
+ rT0(E2)

≥ 1
m

rS(E1) +
m − 1

m
rS(E1) + rT1(E2) + rT0(E2)

+
(m − 1)[(mr − m − r + 2) + (r − 1) − 2r] + r

m

= rS(E1) + rT (E2) +
(m − 1)[mr − 2r − m + 1] + r

m

≥ rS(E1) + rT (E2) +
(m − 1)[2(m − 2) − m + 1] + r

m

= rS(E1) + rT (E2) +
(m − 1)(m − 3) + r

m
≥ rS(E1) + rT (E2).

Subcase 4.2. |T1| ≥ 2.
Thus we have

rT1(E2) ≤ min{2(m − 1)r, (m − 1)r|T1|} = 2(m − 1)r
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and ∃x, y ∈ T1. By (1), (2), m ≥ 2 and r ≥ 2, we obtain

δG(S, T ; g, f) ≥ r

m
|T1| +

(m − 1)r
m

|S| + m − 1
m

dG−S(T1)

+
1
m

dG−T1(S) + rT0(E2)

≥ 2r

m
+

(m − 1)r
m

|S| + m − 1
m

dG−S(T1 \ x)

+
m − 1

m
dG−S(x) +

1
m

dG−T1(S) + rT0(E2)

=
2r

m
+

(m − 1)(r − 1)
m

|S| + m − 1
m

dG−S(x)

+
m − 1

m
(dG−S(T1 \ x) + |S|) +

1
m

dG−T1(S) + rT0(E2)

≥ 2r

m
+

m − 1
m

|S| + m − 1
m

dG−S(x)

+
m − 1

m
(dG−S(T1 \ x) + |S|) +

1
m

dG−T1(S) + rT0(E2)

≥ 2r

m
+

m − 1
m

dG(x) +
m − 1

m
dG(y) +

1
m

dG−T1(S)

+rT0(E2) (x, y ∈ T1)

≥ 2r

m
+

m − 1
m

(2mr − m − r + 2)

+
m − 1

m
(2mr − m − r + 2) +

1
m

dG−T1(S) + rT0(E2)

≥ 2r

m
+

2(m − 1)
m

(2mr − m − r + 2)

+
1
m

rS(E1) + rT0(E2)

=
1
m

rS(E1) + rT0(E2) +
2r(m − 1)

m
+ 2(m − 1)r

+
2(m − 1)

m
(mr − m − 2r + 2) +

2r

m

≥ 1
m

rS(E1) + rT0(E2) +
m − 1

m
rS(E1) + rT1(E2)

+
2(m − 1)

m
((m − 2)r − m + 2) +

2r

m

≥ rS(E1) + rT (E2) +
2(m − 1)

m
(2(m − 2) − m + 2) +

2r

m

= rS(E1) + rT (E2) +
2(m − 1)

m
(m − 2) +

2r

m
≥ rS(E1) + rT (E2).



RANDOMLY ORTHOGONAL FACTORIZATIONS 1621

For any two disjoint subsets S and T of V (G), we have

δG(S, T ; g, f) ≥ rS(E1) + rT (E2).

By Lemma 2.2, G admits a (g, f)-factor F1 such that E1 ⊆ E(F1) and E2 ∩
E(F1) = ∅. This completes the proof. ¤

Now we are ready to prove the main theorem.

Proof of Theorem 1. According to Lemma 2.3, the theorem is trivial for r = 1.
In the following, we consider r ≥ 2. Let {A1, A2, . . . , Am} be any partition of
E(H) with |Ai| = r, 1 ≤ i ≤ m. We prove that there is a (0, f)-factorization
F = {F1, F2, . . . , Fm} of G such that Ai ⊆ E(Fi) for all 1 ≤ i ≤ m. We apply
induction on m. The assertion is trivial for m = 1. Supposing the statement
holds for m − 1, let us proceed to the induction step.

Let E2 = E(H) \ A1. By Lemma 3.1, G has a (g, f)-factor F1 such that
A1 ⊆ E(F1) and E2∩E(F1) = ∅. According to the definition of g(x), obviously,
F1 is also a (0, f)-factor of G. Set G′ = G−E(F1). It follows from the definition
of g(x) that

0 ≤ dG′(x) = dG(x) − dF1(x) ≤ dG(x) − g(x)
≤ dG(x) − [dG(x) − ((m − 1)f(x) − (m − 2)r)]
= (m − 1)f(x) − (m − 2)r.

Hence G′ is a (0, (m − 1)f − (m − 2)r)-graph. Let H ′ = G[E2]. Then the
induction hypothesis guarantees the existence of a (0, f)-factorization F ′ =
{F2, . . . , Fm} in G′ which satisfies Ai ⊆ E(Fi), 2 ≤ i ≤ m. Hence G has a
(0, f)-factorization which is randomly r-orthogonal to H. This completes the
proof. ¤
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