ON $\pi_{\mathfrak{F}}$ -EMBEDDED SUBGROUPS OF FINITE GROUPS

WENBIN GUO, HAIFENG YU, AND LI ZHANG

ABSTRACT. A chief factor H/K of G is called \mathfrak{F} -central in G provided $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. A normal subgroup N of G is said to be $\pi\mathfrak{F}$ -hypercentral in G if either N=1 or $N \neq 1$ and every chief factor of G below N of order divisible by at least one prime in π is \mathfrak{F} -central in G. The symbol $Z_{\pi\mathfrak{F}}(G)$ denotes the $\pi\mathfrak{F}$ -hypercentre of G, that is, the product of all the normal $\pi\mathfrak{F}$ -hypercentral subgroups of G. We say that a subgroup H of G is $\pi\mathfrak{F}$ -embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H\cap T)H_G/H_G \leq Z_{\pi\mathfrak{F}}(G/H_G)$, where H_G is the maximal normal subgroup of G contained in H. In this paper, we use the $\pi\mathfrak{F}$ -embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group, p denotes a prime and π denotes a non-empty subset of the set \mathbb{P} of all primes. Moreover, $|G|_p$ is the order of Sylow p-subgroups of G, $\pi(G)$ denotes the set of all prime factors of |G| and $\pi(\mathfrak{F}) = \bigcup \{\pi(G) \mid G \in \mathfrak{F}\}$, where \mathfrak{F} is a non-empty class of groups. All unexplained notation and terminology are standard, as in [4], [7] and [15].

Let \mathfrak{F} be a class of groups containing 1 and $G^{\mathfrak{F}} = \bigcap \{N \mid N \subseteq G, G/N \in \mathfrak{F}\}$. \mathfrak{F} is called a *formation* if for every group G, every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} . A formation \mathfrak{F} is said to be *saturated* if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$; S-closed $(S_n$ -closed) if $H \in \mathfrak{F}$ whenever $H \subseteq G \in \mathfrak{F}$ ($H \subseteq G \in \mathfrak{F}$, respectively).

We use \mathfrak{N} , \mathfrak{U} , and \mathfrak{S} to denote the saturated formations of all nilpotent groups, supersolvable groups and solvable groups, respectively.

For a class \mathfrak{F} of groups, a chief factor H/K of G is called \mathfrak{F} -central in G if $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. Following [11], a normal subgroup N of G is said to be $\pi\mathfrak{F}$ -hypercentral in G if either N=1 or $N \neq 1$ and every chief factor of

Received December 29, 2014.

²⁰¹⁰ Mathematics Subject Classification. 20D10, 20D15, 20D20.

 $Key~words~and~phrases.~\pi \mathfrak{F}\text{-hypercenter},~\pi \mathfrak{F}\text{-embedded}$ subgroup, Sylow subgroup, n- maximal subgroup.

Research is supported by a NNSF grant of China (grant #11371335).

G below N of order divisible by at least one prime in π is \mathfrak{F} -central in G. The symbol $Z_{\pi\mathfrak{F}}(G)$ denotes the $\pi\mathfrak{F}$ -hypercentre of G, that is, the product of all normal $\pi\mathfrak{F}$ -hypercentral subgroups of G. When $\pi = \mathbb{P}$ is the set of all primes, $Z_{\mathbb{P}\mathfrak{F}}(G)$ is called the \mathfrak{F} -hypercentre of G and denoted by $Z_{\mathfrak{F}}(G)$ (see [4] p. 389). Clearly, for any non-empty set π of primes, $Z_{\mathfrak{F}}(G) \leq Z_{\pi\mathfrak{F}}(G)$.

It is well known that the \mathfrak{F} -hypercentre essentially influences the structure of a group. For example, if all subgroups of G with prime order and order 4 are contained in $Z_{\infty}(G)$, then G is nilpotent (N. Itŏ). If all subgroups with prime order and order 4 are in $Z_{\mathfrak{U}}(G)$, then G is supersolvable (B. Huppert, K. Doerk). Recently, by using the \mathfrak{F} -hypercentre to study the structure of a group, a large number of new results were obtained (see, for example, [1,3,5,9-11,18-20,23]). In connection with this, we naturally ask: what effect does the $\pi\mathfrak{F}$ -hypercentre have on the structure of a group?

Recall that a subgroup H of G is said to be s-quasinormal in G [17] if H permutes with every Sylow subgroup of G. Following [17], we use $Syl(G)^{\perp}$ to denote the set of all s-quasinormal subgroups of G.

In this paper, we will use the $\pi \mathfrak{F}$ -hypercentre to study the structure of a group. Our tool is following.

Definition 1.1. Let \mathfrak{F} be a non-empty class of groups. A subgroup H of G is called $\pi\mathfrak{F}$ -embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G (that is, $HT \in Syl(G)^{\perp}$) and $(H \cap T)H_G/H_G \leq Z_{\pi\mathfrak{F}}(G/H_G)$, where H_G is the maximal normal subgroup of G contained in H.

In Section 2, we give some properties of the $\pi \mathfrak{F}$ -embedded subgroups and some related results. In Section 3, we give new characterizations of p-nilpotence and supersolvability of a group. In Section 4, we list some applications of our results.

2. Preliminaries

Lemma 2.1 ([11, Lemma 2.2], [3, Lemma 2.8]). Let \mathfrak{F} be a saturated formation and $\pi \subseteq \pi(\mathfrak{F})$. Let N be a normal subgroup of G and $A \subseteq G$. Then:

- (1) Every G-chief factor of $Z_{\pi \mathfrak{F}}(G)$ of order divisible by at least one prime in π is \mathfrak{F} -central.
 - (2) $Z_{\pi\mathfrak{F}}(G)N/N \leq Z_{\pi\mathfrak{F}}(G/N)$.
 - (3) $Z_{\pi \mathfrak{F}}(A)N/N \leq Z_{\pi \mathfrak{F}}(AN/N)$.
- (4) If \mathfrak{F} is $(S_n$ -closed) S-closed and A is a (normal) subgroup of G, then $Z_{\pi\mathfrak{F}}(G) \cap A \leq Z_{\pi\mathfrak{F}}(A)$.
 - (5) If $\mathfrak{G}_{\pi'}\mathfrak{F} = \mathfrak{F}$ and $G/Z_{\pi\mathfrak{F}}(G) \in \mathfrak{F}$, then $G \in \mathfrak{F}$.
- (6) Suppose that \mathfrak{F} is $(S_n\text{-closed})$ S-closed and A is a (normal) subgroup of G. If $\mathfrak{G}_{\pi'}\mathfrak{F} = \mathfrak{F}$ and $A \in \mathfrak{F}$, then $Z_{\pi\mathfrak{F}}(G)A \in \mathfrak{F}$.

Lemma 2.2 (see [17]). Let G be a group, $H \leq K \leq G$ and $A \leq G$.

(1) $Syl(G)^{\perp}$ is a proper sublattice of the lattice consisting of all subnormal subgroups of G.

- (2) If $A, H \in Syl(G)^{\perp}$, then $\langle A, H \rangle \in Syl(G)^{\perp}$, where $\langle A, H \rangle$ is the smallest subgroup of G containing A and H.
 - (3) If $H \in Syl(G)^{\perp}$, then $H \in Syl(K)^{\perp}$ and $H \cap A \in Syl(A)^{\perp}$.
- (4) Suppose that A is normal in G. If $H \in Syl(G)^{\perp}$, then $HA/A \in Syl(G/A)^{\perp}$. Moreover, the converse holds in case $A \leq H$.
- (5) Let A be a p-subgroup of G for some prime p. Then $A \in Syl(G)^{\perp}$ if and only if $O^p(G) \leq N_G(A)$.
- **Lemma 2.3** ([2, Lemma 2.12]). Let p be a prime divisor of |G| with $(|G|, (p-1)(p^2-1)\cdots(p^n-1))=1$. If $H \subseteq G$ with $p^{n+1} \nmid |H|$ and G/H is p-nilpotent, then G is p-nilpotent. In particular, if $p^{n+1} \nmid |G|$, then G is p-nilpotent.
- **Lemma 2.4.** Let \mathfrak{F} be a saturated formation, G be a group and $H \leq K \leq G$.
- (1) H is $\pi \mathfrak{F}$ -embedded in G if and only if there exists a normal subgroup T of G such that $HT \in Syl(G)^{\perp}$, $H_G \leq T$ and $(H \cap T)/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$.
- (2) Suppose that H is normal in G. Then K/H is $\pi \mathfrak{F}$ -embedded in G/H if and only if K is $\pi \mathfrak{F}$ -embedded in G.
- (3) Suppose that H is normal in G. Then for every $\pi \mathfrak{F}$ -embedded subgroup E of G satisfying (|H|, |E|) = 1, HE/H is $\pi \mathfrak{F}$ -embedded in G/H.
- (4) Suppose that H is $\pi \mathfrak{F}$ -embedded in G. If \mathfrak{F} is $(S_n$ -closed) S-closed and K is a (normal) subgroup of G, then H is $\pi \mathfrak{F}$ -embedded in K.
 - (5) If $G \in \mathfrak{F}$, then every subgroup of G is $\pi \mathfrak{F}$ -embedded in G.
 - (6) Every subgroup of a π' -group G is $\pi \mathfrak{F}$ -embedded in G.
- *Proof.* (1) The sufficiency is clear. Now assume that H is $\pi \mathfrak{F}$ -embedded in G and let T be a normal subgroup of G such that $HT \in Syl(G)^{\perp}$ and $(H \cap T)H_G/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$. Let $T_0 = TH_G$. Then $HT_0 = HT \in Syl(G)^{\perp}$ and $(H \cap T_0)/H_G = (H \cap T)H_G/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$.
- (2) First assume that K/H is $\pi \mathfrak{F}$ -embedded in G/H. Then by (1), G/H has a normal subgroup T/H such that

$$(K/H)(T/H) = KT/H \in Syl(G/H)^{\perp}, (K/H)_{G/H} = K_G/H \le T/H$$

and

$$((K/H) \cap (T/H))/(K/H)_{G/H} \le Z_{\pi \mathfrak{F}}((G/H)/(K/H)_{G/H}).$$

Note that

$$((K/H) \cap (T/H))/(K/H)_{G/H} \cong (T \cap K)/K_G$$

and

$$Z_{\pi\mathfrak{F}}((G/H)/(K/H)_{G/H}) \cong Z_{\pi\mathfrak{F}}(G/K_G).$$

Also, $KT \in Syl(G)^{\perp}$ by Lemma 2.2(4). Hence K is $\pi \mathfrak{F}$ -embedded in G. Analogously, one can show that if K is $\pi \mathfrak{F}$ -embedded in G, then K/H is $\pi \mathfrak{F}$ -embedded in G/H.

(3) Assume that H is normal in G and E is $\pi \mathfrak{F}$ -embedded in G with (|H|, |E|) = 1. Then by (1), G has a normal subgroup T such that $ET \in Syl(G)^{\perp}$, $E_G \leq T$ and $(E \cap T)/E_G \leq Z_{\pi \mathfrak{F}}(G/E_G)$. We now prove that HE/H is $\pi \mathfrak{F}$ -embedded in G/H. By (2), we only need to prove that HE is $\pi \mathfrak{F}$ -embedded in G. It is

clear that $(HE)T = H(ET) \in Syl(G)^{\perp}$ by Lemma 2.2(2). Since (|H|,|E|) = 1, $(|HE \cap T : H \cap T|, |HE \cap T : E \cap T|) = 1$. So $HE \cap T = (H \cap T)(E \cap T)$ (see [4, A, 1.6]). Let $D = (HE)_G$. Then $(HE \cap T)D/E_G = (E \cap T)D/E_G \le Z_{\pi\mathfrak{F}}(G/E_G)(D/E_G)$. Thus $(HE \cap T)D/D \le Z_{\pi\mathfrak{F}}(G/D)$ by Lemma 2.1(2). This shows that HE is $\pi\mathfrak{F}$ -embedded in G.

(4) Let T be a normal subgroup of G such that $HT \in Syl(G)^{\perp}$, $H_G \leq T$ and $(H \cap T)/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$. Assume that $T_1 = K \cap T$. Then $HT_1 = K \cap HT \in Syl(K)^{\perp}$ by Lemma 2.2(3) and $(H \cap T_1)/H_G = (H \cap T)/H_G \cap K/H_G \leq Z_{\pi \mathfrak{F}}(K/H_G)$ by Lemma 2.1(4). Since $H_G \leq H_K$, $(T_1 \cap H)H_K/H_K \leq Z_{\pi \mathfrak{F}}(K/H_K)$ by Lemma 2.1(2). Hence H is $\pi \mathfrak{F}$ -embedded in K.

(5) and (6) are obvious.

Lemma 2.5 (see [17]). (1) Let H be a p-subgroup of G for some prime p. Then H is subnormal in G if and only if $H \leq O_p(G)$.

(2) Let H be a subgroup of G with p-power index for some prime p. Then H is subnormal in G if and only if $O^p(G) \leq H$.

Lemma 2.6 ([12, Lemma 2.12]). Let p be a prime divisor of G with (|G|, p-1) = 1. Suppose that P is a Sylow p-subgroup of G such that every maximal subgroup of P has a p-nilpotent supplement in G. Then G is p-nilpotent.

Lemma 2.7 ([8, Lemma 2.3]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

3. Main results

Theorem 3.1. Let p be a prime divisor of |G| such that $(|G|, (p-1)(p^2-1)\cdots(p^n-1))=1$ for some integer $n\geqslant 1$. If there exists a Sylow p-subgroup P of G such that every n-maximal subgroup (if exists) of P is $p\mathfrak{U}$ -embedded in G, then G is p-nilpotent.

Proof. Suppose that the assertion is false and let (G, P) be a counterexample such that |G| + |P| is minimal. Then $p^{n+1} \mid |G|$ by Lemma 2.3.

(1)
$$O_{p'}(G) = 1$$
.

Assume that $O_{p'}(G) > 1$. Let $M/O_{p'}(G)$ be an n-maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$. Then $M = O_{p'}(G)(M \cap P)$, where $M \cap P$ is an n-maximal subgroup of P since $|P: M \cap P| = |PO_{p'}(G): M| = p^n$. Thus $M/O_{p'}(G)$ is $p\mathfrak{U}$ -embedded in $G/O_{p'}(G)$ by Lemma 2.4(3). This shows that

$$(G/O_{p'}(G), PO_{p'}(G)/O_{p'}(G))$$

satisfies the hypothesis for (G, P). Thus $G/O_{p'}(G)$ is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction.

(2)
$$Z_{p\mathfrak{U}}(G) = 1$$
.

Suppose that $Z_{p\mathfrak{U}}(G) \neq 1$. Let N be a minimal normal subgroup of G contained in $Z_{p\mathfrak{U}}(G)$. Then by (1) $N \leq Z_{\mathfrak{U}}(G)$ is a subgroup of order p.

Consequently, $N \leq Z(G)$ since (|G|, p-1) = 1. By Lemma 2.4(2), (G/N, P/N) satisfies the hypothesis for (G, P). Hence G/N is p-nilpotent and so G is p-nilpotent, a contradiction.

(3)
$$O_p(G) \neq 1$$
.

If $O_p(G)=1$, then $(P_n)_G=1$ for any n-maximal subgroup P_n of P. Hence by the hypothesis and (2), G has a normal subgroup T such that $P_nT\in Syl(G)^\perp$ and $P_n\cap T=1$. Clearly $|T|_p\leqslant p^n$, so T is p-nilpotent by Lemma 2.3. Thus T=1 by the assumption $O_p(G)=1$ and (1). This shows that $P_n\in Syl(G)^\perp$, so $P_n\leq O_p(G)=1$ by Lemma 2.2(1) and Lemma 2.5(1), which contradicts $p^{n+1}\mid |G|$. Thus $O_p(G)\neq 1$.

(4) $O_p(G)$ is a minimal normal subgroup of G and $G = O_p(G) \rtimes M$, where M is p-nilpotent.

Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then G/N is p-nilpotent similar as the proof in (2). Since the class of all p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of G contained in $O_p(G)$ and $N \nsubseteq \Phi(G)$. It follows that $G = N \rtimes M$ for some maximal subgroup M of G. By [4, A, 8.4], $O_p(G) \cap M \unlhd G$, so $O_p(G) \cap M = 1$ by the uniqueness of N. It follows that $O_p(G) = N(O_p(G) \cap M) = N$. Thus $O_p(G)$ is a minimal normal subgroup of G.

(5) Final contradiction.

Let P_n be an arbitrary n-maximal subgroup of P. Then $(P_n)_G = 1$ or $O_p(G)$ by (4). If $(P_n)_G = O_p(G)$ for any n-maximal subgroup P_n of P, then $G = O_p(G)M = P_nM$. This shows that every n-maximal subgroup of P has a p-nilpotent supplement in G. Consequently, every maximal subgroup of P has a p-nilpotent supplement in G. So G is p-nilpotent by Lemma 2.6. This contradiction shows that there exists at least one non-trivial n-maximal subgroup P_n of P with $(P_n)_G = 1$. Then by the hypothesis, G has a normal subgroup T such that $P_nT \in Syl(G)^{\perp}$ and $P_n \cap T = 1$ by (2). Now by Lemma 2.3, T is p-nilpotent. Hence T=1 or $O_p(G)$ by (1) and (4). Assume that $T = O_p(G)$. Since $P_n T \in Syl(G)^{\perp}$, we have that $P_n \leq O_p(G) = T$ by Lemma 2.2(1) and Lemma 2.5(1). Thus $P_n = P_n \cap T = 1$, a contradiction. Therefore T=1. Then $P_n \in Syl(G)^{\perp}$, so $P_n \leq O_p(G)$ and $O^p(G) \leq N_G(P_n)$ by Lemma 2.2(1)(5) and Lemma 2.5(1). Clearly, the number of subgroups in the conjugate class of P_n in P is equal to $|P:P\cap N_G(P_n)|=|G:N_G(P_n)|>1$, which is a p-power. Let $|O_p(G)| = p^d$ and $|P_n| = p^k$. As $O_p(G)$ is elementary abelian by (4), the number of subgroups of order $|P_n|$ is

$$f(d,k) = \frac{(p^{d}-1)(p^{d-1}-1)\cdots(p^{d-k+1}-1)}{(p^{k}-1)(p^{k-1}-1)\cdots(p-1)}$$

(see [15, III, 8.5]). But $p \nmid f(d, k)$, a contradiction. This completes the proof.

Corollary 3.2. Let p be a prime divisor of |G| with $(|G|, (p-1)(p^2-1)\cdots(p^n-1)) = 1$ for some integer $n \ge 1$. Suppose that G has a normal subgroup H such

that G/H is p-nilpotent. If H has a Sylow p-subgroup P such that every n-maximal subgroup (if exists) of P is $p\mathfrak{U}$ -embedded in G, then G is p-nilpotent.

Proof. First suppose that H=P. Let K/P be the normal Hall p'-subgroup of G/P. By the Schur-Zassenhaus Theorem $K=P\rtimes K_{p'}$, for some Hall p'-subgroup $K_{p'}$ of K. Obviously, $K_{p'}$ is also a Hall p'-subgroup of G. By Lemma 2.4(4) every n-maximal subgroup of P is $p\mathfrak{U}$ -embedded in K. Hence K is p-nilpotent by Theorem 3.1 and so $K=P\times K_{p'}$. Then $K_{p'}$ is normal in G. Consequently G is p-nilpotent.

Finally, assume that H > P. Then by Lemma 2.4(4) and Theorem 3.1, H is p-nilpotent. Let $H_{p'}$ be the normal Hall p'-subgroup of H. Now by Lemma 2.4(3), $(G/H_{p'}, H/H_{p'})$ satisfies the assumptions. Hence $G/H_{p'}$ is p-nilpotent by induction. It follows that G is p-nilpotent.

We use \mathfrak{N}^p to denote the saturated formation of all p-nilpotent groups.

Theorem 3.3. Let p be a prime divisor of |G| with $(|G|, (p-1)(p^2-1)\cdots(p^n-1)) = 1$ for some integer $n \ge 1$. Let H be a normal subgroup of G such that G/H is p-nilpotent and P be an arbitrary Sylow p-subgroup of H. Suppose that every subgroup L of $P \cap G^{\mathfrak{N}^p}$ of order p^n or A (when p = 2, n = 1, P is non-abelian and L is cyclic) not contained in $Z_{\infty}(G)$ is $p\mathfrak{U}$ -embedded in G. Then G is p-nilpotent.

Proof. Suppose that the result is false and let (G, H) be a counterexample for which |G| + |H| is minimal. Clearly, $G^{\mathfrak{N}^p} \leq H$. We proceed via the following steps.

- (1) $|P| \ge p^{n+1}$ (it follows directly from Lemma 2.3).
- (2) $O_{p'}(G) = 1$.

Assume that $N = O_{p'}(G) > 1$. If $|(G/N)^{\mathfrak{N}^p}|_p = |G^{\mathfrak{N}^p}N/N|_p < p^{n+1}$, then G/N is p-nilpotent by Lemma 2.3. We may, therefore, assume that $|G^{\mathfrak{N}^p}N/N|_p \geqslant p^{n+1}$. Let L/N be a subgroup of $PN/N \cap G^{\mathfrak{N}^p}N/N$ of order p^n or 4 (when p=2 and n=1, PN/N is non-abelian and L/N is cyclic) not contained in $Z_{\infty}(G/N)$, where P is an arbitrary Sylow p-subgroup of H. Since $L = (L \cap P)N$ and (|N|, p) = 1, $|L/N| = |L \cap P| = p^n$ or 4. Also, since $L \cap P \leq G^{\mathfrak{N}^p}N$ and $(|L \cap P|, |G^{\mathfrak{N}^p}N : G^{\mathfrak{N}^p}|) = 1$, we have $L \cap P \leq G^{\mathfrak{N}^p}$. By Lemma 2.1(2) $L \cap P \nsubseteq Z_{\infty}(G)$. Suppose that $|L \cap P| = 4$. Then P is non-abelian and $L \cap P$ is cyclic owing to the G-isomorphism $L/N \cong L \cap P$. Hence by hypothesis and Lemma 2.4(3), L/N is $p\mathfrak{U}$ -embedded in G/N. This shows that (G/N, HN/N) satisfies the hypothesis. The choice of (G, H) implies that G/N is p-nilpotent. Thus G is p-nilpotent, a contradiction.

(3) Every proper subgroup M of G is p-nilpotent.

Considering $(M, M \cap H)$. Clearly, every Sylow p-subgroup of $M \cap H$ has the form $M \cap P$ for some Sylow p-subgroup P of H. By Lemma 2.3, we may assume that $|(H \cap M) \cap M^{\mathfrak{N}^p}|_p = |M^{\mathfrak{N}^p}|_p \geqslant p^{n+1}$. Let L be a subgroup of $(P \cap M) \cap M^{\mathfrak{N}^p}$ of order p^n or 4 (when p = 2 and n = 1, $P \cap M$ is non-abelian and L is cyclic) not

contained in $Z_{\infty}(M)$. Obviously $P \cap M^{\mathfrak{N}^p} \leq P \cap (M \cap G^{\mathfrak{N}^p}) \leq P \cap G^{\mathfrak{N}^p}$. Also, $L \not\subseteq Z_{\infty}(G)$ by Lemma 2.1(4). Hence by the hypothesis and Lemma 2.4(4), L is $p\mathfrak{U}$ -embedded in M. The choice of (G,H) implies that M is p-nilpotent.

- (4) G is a minimal non-nilpotent group.
- By (3), G is a minimal non-p-nilpotent group. Then G is a minimal non-nilpotent group by Itŏ's Theorem (see [15, IV, 5.4]). Hence by [7, (3.4.7) and (3.4.11)], $G = P \rtimes Q$, where P is the normal Sylow p-subgroup of G and Q a cyclic Sylow q-subgroup of G with $q \neq p$, and the following hold: (i) $P/\Phi(P)$ is a chief factor of G; (ii) $P = G^{\mathfrak{N}} = G^{\mathfrak{N}_p}$; (iii) the exponent of P is p or 4 (when P is a non-abelian 2-subgroup); (iv) $\Phi(G) = Z_{\infty}(G)$; (v) $F(G) = F_p(G) = P\Phi(G)$.
 - (5) $F(G) = P \text{ and } \Phi(G) = \Phi(P).$
- By (2) and (4), $F_p(G) = P = F(G) = P\Phi(G)$. Then $\Phi(P) \leq \Phi(G) \leq P$, so $\Phi(G) = \Phi(P)$ or P since $P/\Phi(P)$ is a chief factor of G. If $\Phi(G) = P$, then G = Q, a contradiction. Thus $\Phi(G) = \Phi(P)$.
 - (6) P has a proper subgroup L of order p^n or 4 such that $L \nsubseteq \Phi(P)$.

Take $x \in P \setminus \Phi(P)$ and let $E = \langle x \rangle$. Then |E| = p or 4 (when P is a non-abelian 2-subgroup). It follows that P has a subgroup L of order p^n or cyclic of order 4 such that $E \leq L$ and $L \not\subseteq \Phi(P)$.

(7) Final contradiction.

Clearly $L_G \leq \Phi(P)$. By the hypothesis L is $p\mathfrak{U}$ -embedded in G. Let T be a normal subgroup of G such that $LT \in Syl(G)^{\perp}$, $L_G \leq T$ and $(L \cap T)/L_G \leq Z_{p\mathfrak{U}}(G/L_G)$. If T = G, then $(L \cap T)/L_G = L/L_G \leq Z_{p\mathfrak{U}}(G/L_G)$. It follows from Lemma 2.1(2) that $L\Phi(P)/\Phi(P) \leq Z_{p\mathfrak{U}}(G/\Phi(P))$. Hence $P/\Phi(P) \cap Z_{p\mathfrak{U}}(G/\Phi(P)) \neq 1$, so $P/\Phi(P) \leq Z_{p\mathfrak{U}}(G/\Phi(P))$ by (i) in (4). Then $|P/\Phi(P)| = p$ and $P/\Phi(P) \leq Z(G/\Phi(P))$. Therefore $G/\Phi(P)$ is p-nilpotent since $P = G^{\mathfrak{N}_p}$, and so G is p-nilpotent, a contradiction. Now assume T < G. Then $T \leq F_p(G) = P$ by (3). As $T\Phi(P)$ is normal in G, $T\Phi(P) = \Phi(P)$ or P by (i). If $T\Phi(P) = P$, then P = T and so $L \cap T = L$. Similar as the above, we obtain a contradiction. Hence $T \leq \Phi(P)$. As $LT \in Syl(G)^{\perp}$, $Q \leq O^p(G) \leq N_G(LT)$ by Lemma 2.2(5). Then $Q \leq N_G(LT\Phi(P)) = N_G(L\Phi(P))$. Also, since $P/\Phi(P)$ is elementary abelian by (i), it follows that $L\Phi(P)/\Phi(P)$ is normal in $G/\Phi(P)$. Thus $L\Phi(P) = P = L$. The final contradiction completes the proof.

Theorem 3.4. G is supersolvable if and only if G has a normal subgroup H such that G/H is supersolvable and every maximal subgroup of any non-cyclic Sylow p-subgroup of H is \mathfrak{pU} -embedded in G, for any prime $p \in \pi(H)$.

Proof. Since the necessity is obvious, we only need to prove the sufficiency. Suppose that the sufficiency is false and let (G, H) be a counterexample such that |G| + |H| is minimal. Then:

(1) Let N is a normal subgroup of G contained in H. If N is either a p-subgroup for some prime $p \in \pi(H)$ or a Hall subgroup of H, then the hypothesis holds for (G/N, H/N) and so G/N is supersolvable.

Firstly, $(G/N)/(H/N) \cong G/H$ is supersolvable. Assume that N is a p-group for some prime $p \in \pi(H)$. Let Q/N be a non-cyclic Sylow q-subgroup of H/N and M/N be an arbitrary maximal subgroup of Q/N. If q = p, then Q is a non-cyclic Sylow p-subgroup of H and H/N is $p\mathfrak{U}$ -embedded in H/N by Lemma 2.4(2). Now assume $q \neq p$. Let H/N be a Sylow H/N-subgroup of H/N and H/N he a Sylow H/N-subgroup of H/N and H/N he schur-Zassenhaus Theorem. Clearly $|Q_1| : |H/N| = |Q/N| : |H/N| = q$ and H/N is a non-cyclic Sylow H/N-subgroup of H/N. Hence H/N is H/N-embedded in H/N by Lemma 2.4(3). This shows that the hypothesis holds for H/N0 when H/N1 is a Hall subgroup of H/N1.

(2) H is a Sylow tower group of supersolvable type.

Let p be the smallest prime divisor of |H| and H_p be a Sylow p-subgroup of H. If H_p is cyclic, then H is p-nilpotent by [16, (10.1.9)]. Otherwise, H is still p-nilpotent by Lemma 2.4(4) and Theorem 3.1. Let U be the normal Hall p'-subgroup of H. Then by Lemma 2.4(4), U satisfies the hypothesis. Therefore H is a Sylow tower group of supersolvable type by induction.

- (3) If N is a normal Hall subgroup of H, then N = H. Clearly, (G, N) satisfies the hypothesis. Hence it follows from (1).
- (4) H is a non-cyclic q-subgroup for some prime q (it follows directly from (2), (3) and Lemma 2.7).
 - (5) H is a minimal normal subgroup of G.

By (1) and (4), G has an unique minimal normal subgroup R of G contained in H and $R \nsubseteq \Phi(G)$. Let M be a maximal subgroup of G such that $G = R \rtimes M$. By (4), $H \le F(G) \le C_G(R)$, so $H \cap M \le G$. This implies that $H \cap M = 1$. Thus $H = R(H \cap M) = R$.

(6) Final contradiction.

By (5), $G = H \rtimes M$ where M is a maximal subgroup of G and $M \cong G/H$ is supersolvable. Let M_q be a Sylow q-subgroup of M. Then $G_q = HM_q$ is a Sylow q-subgroup of G. Let $H^* = G_q^* \cap H$ where G_q^* is a maximal subgroup of G_q containing M_q . Then H^* is a non-trivial maximal subgroup of H. Clearly, $(H^*)_G = 1$ by (5). By (4), H^* is $q\mathfrak{U}$ -embedded in G. Let T be a normal subgroup of G such that $H^*T \in Syl(G)^\perp$ and $H^* \cap T \leq Z_{q\mathfrak{U}}(G)$. If $H \cap T = H$, then $H^* \cap T = H^* \leq Z_{q\mathfrak{U}}(G)$. This implies that $H \leq Z_{q\mathfrak{U}}(G)$ is a cyclic subgroup of order q, which contradicts (4). We may, therefore, assume that $H \cap T = 1$. Then $H^* = H^*(H \cap T) = H \cap H^*T \in Syl(G)^\perp$ by Lemma 2.2(1). Therefore $G = O^p(G)G_q \leq N_G(H^*)$ by Lemma 2.2(5). This shows that H^* is normal in G. The contradiction completes the proof.

The following theorem is a dual of Theorem 3.4.

Theorem 3.5. G is supersolvable if and only if G has a normal subgroup H such that G/H is supersolvable and every cyclic subgroup of H of order p or

order 4 (when p = 2 and H has a non-abelian Sylow 2-subgroup) is $p\mathfrak{U}$ -embedded in G, for any prime $p \in \pi(H)$.

Proof. Since the necessity is obvious, we only need to prove the sufficiency. Suppose that the result is false and let (G, H) be a counterexample such that |G| + |H| is minimal. Then:

(1) G is a minimal non-supersolvable group.

Let M be a proper subgroup of G. Consider $(M, M \cap H)$. Firstly, $M/(M \cap H) \cong HM/H \leq G/H$ is superslovable. Also, every cyclic subgroup of $M \cap H$ of order p or order 4 (if $M \cap H$ has a non-abelian Sylow 2-subgroup) is $p\mathfrak{U}$ -emdedded in M by Lemma 2.4(4). This shows that $(M, M \cap H)$ satisfies the hypothesis for (G, H). Hence M is supersolvable by the choice of (G, H). This shows that G is a minimal non-supersolvable group, and so G is solvable (see [16, (10.3.4)]).

(2) H is a q-group for some prime q.

Let p be the smallest prime divisor of |H|. By Lemma 2.4(4), every subgroup of H with order p or 4 (if p=2 and H has a non-abelian Sylow 2-subgroup) is $p\mathfrak{U}$ -embedded in H. Hence H is p-nilpotent by Theorem 3.3. Let U be the normal Hall p'-subgroup of H. U satisfies the hypothesis by Lemma 2.4(4). Therefore H is a Sylow tower group of supersolvable type by induction.

Let H_q be the normal Sylow q-subgroup of H, where q is the largest prime divisor of |H|. By Lemma 2.4(3), $(G/H_q, H/H_q)$ satisfies the hypothesis. Hence G/H_q is supersolvable. If $H_q < H$, then G is supersolvable by the choice of (G, H). Thus (2) holds.

(3) q is the largest prime divisor of |G|. Consequently q > 2.

Assume that $p \not = q$ is the largest prime divisor of |G|. Let G_p be a Sylow p-subgroup of G. Then HG_p/H is normal in G/H by the supersolvability of G/H. By Lemma 2.4(4) and Theorem 3.3, HG_p is q-nilpotent. It follows that G_p is normal in G. Considering $(G/G_p, HG_p/G_p)$, then G/G_p is supersolvable by Lemma 2.4(3) and the choice of (G, H). This implies that $G \cong G/(H \cap G_p)$ is supersolvable, a contradiction.

- (4) The Sylow q-subgroup G_q of G is normal in G.
- It follows from (3) and the supersolvability of G/H.
- (5) $H = G_q = G^{\mathfrak{U}}$ with exponent q and $H/\Phi(H)$ is a non-cyclic chief factor of G.
- By (1), (3), (4) and [7, (3.4.2) and (3.4.7)], we have: (i) $G_q = G^{\mathfrak{U}}$; (ii) $G^{\mathfrak{U}}/\Phi(G^{\mathfrak{U}})$ is a chief factor of G; (iii) the exponent of $G^{\mathfrak{U}}$ is q. Since $G_q = G^{\mathfrak{U}} \leq H \leq G_q$, we have that $H = G_q = G^{\mathfrak{U}}$. By Lemma 2.7, we see that $H/\Phi(H)$ is non-cyclic.
 - (6) $H/\Phi(H)$ has a minimal subgroup which does not belong to $Syl(G/\Phi(H))^{\perp}$.

Assume that every minimal subgroup of $H/\Phi(H)$ belongs to $Syl(G/\Phi(H))^{\perp}$. By (5) and Lemma 2.2(2), $H/\Phi(H)$ has a maximal subgroup which belongs to $Syl(G/\Phi(H))^{\perp}$. Then Lemma 2.2(5) implies that $H/\Phi(H)$ has a maximal subgroup which is normal in $G/\Phi(H)$. This implies that $H/\Phi(H)$ is of order q, which contradicts (5).

(7) Final contradiction.

Let $X/\Phi(H)$ be a minimal subgroup of $H/\Phi(H)$ which does not belong to $Syl(G/\Phi(H))^{\perp}$. Take $x \in X \setminus \Phi(H)$. Then $L = \langle x \rangle$ is of order q and $L\Phi(H) = X$. Clearly $L_G = 1$. Let T be a normal subgroup of G such that $LT \in Syl(G)^{\perp}$ and $L \cap T \leq Z_{q\mathfrak{U}}(G)$. By (5), $(H \cap T)\Phi(H) = \Phi(H)$ or H. If $(H \cap T)\Phi(H) = H$, then $H \leq T$ and $L \leq Z_{q\mathfrak{U}}(G)$. Now similar as the proof (7) in Theorem 3.3, we have $|H/\Phi(H)| = q$, a contradiction. Hence $(H \cap T)\Phi(H) = \Phi(H)$. Then $X/\Phi(H) = L(H \cap T)\Phi(H)/\Phi(H) = (H/\Phi(H)) \cap (LT\Phi(H)/\Phi(H)) \in Syl(G/\Phi(H))^{\perp}$ by Lemma 2.2(1)(4), which contradicts the choice of $X/\Phi(H)$. The contradiction completes the proof.

4. Some applications

Recall that a subgroup H of G is said to be: c-normal ([22]) in G if there exists a normal subgroup N of G such that G = HN and $H \cap N \leq H_G$; \mathfrak{F}_h -normal in G ([6]) if there exists a normal subgroup K of G such that HK is a normal Hall subgroup of G and $(H \cap K)H_G/H_G \leq Z_{\mathfrak{F}}(G/H_G)$; \mathfrak{F}_s -quasinormal in G ([14]) if there exists a normal subgroup T of G such that $HT \in Syl(G)^{\perp}$ and $(H \cap T)H_G/H_G \leq Z_{\mathfrak{F}}(G/H_G)$.

It is easy to see that all above subgroups are $\pi \mathfrak{F}$ -embedded for any non-empty set π of primes. However, the following example shows that the converse is not true.

Example. Let $G = S_4$. Then $Z_{\mathfrak{U}}(G) = 1$ and $Z_{3\mathfrak{U}}(G) = G$. Assume that $H = \{1, (12)(34)\}$. Clearly $H_G = 1$. Since $\{1, (123), (132)\}H \neq H\{1, (123), (132)\}$, H is not s-quasinormal in G. For any non-trivial normal subgroup T of G, we have that $HT = T \in Syl(G)^{\perp}$, $H \cap T = H \nsubseteq Z_{\mathfrak{U}}(G)$ and $H \cap T \leq Z_{3\mathfrak{U}}(G)$. This shows that H is \mathfrak{M} -embedded but not \mathfrak{M}_s -quasinormal in G.

Many known results are corollaries of our Theorems, for example, Theorem 5.2 in [6], Theorem 3.4 in [13], Theorem 3.3 in [14], Theorem 1 and Theorem 3 in [21], Theorem 4.1 and Theorem 4.2 in [22] and so on.

References

- [1] A. Ballester-Bolinches, L. M. Ezquerro, and A. N. Skiba, On subgroups of hypercentral type of finite groups, Israel J. Math. 199 (2014), no. 1, 259–265.
- [2] X. Chen and W. Guo, On weakly S-embedded and weakly τ -embedded subgroups, Sib. Math. J. **54** (2013), no. 5, 931–945.
- [3] $\underline{\hspace{1cm}}_{213-231}$, On the $\pi \mathfrak{F}$ -norm and the \mathfrak{H} - \mathfrak{F} -norm of a finite group, J. Algebra **405** (2014),
- [4] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.

- [5] L. M. Ezquerro and X. Soler-Escrivà, Some permutability properties related to \$\mathcal{F}\$-hypercentrally embedded subgroups of finite groups, J. Algebra 264 (2003), no. 1, 279–295
- [6] X. Feng and W. Guo, On \$\mathfrak{F}_h\$-normal subgroups of finite groups, Front. Math. China 5 (2010), no. 4, 653-664.
- [7] W. Guo, The Theory of Classes of Groups, Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.
- [8] _____, On \$\forall \cdots -supplemented subgroups of finite groups, Manuscripta Math. 127 (2008), no. 2, 139–150.
- [9] W. Guo and S. Chen, Weakly c-permutable subgroups of finite groups, J. Algebra 324 (2010), no. 9, 2369–2381.
- [10] W. Guo and A. N. Skiba, On factorizations of finite groups with 3-hypercentral intersections of the factors, J. Group Theory 14 (2011), no. 5, 695–708.
- [11] ______, On the intersection of the \(\varphi\)-maximal subgroups and the generalized \(\varphi\)-hypercentre of a finite group, J. Algebra 366 (2012), 112–125.
- [12] W. Guo, F. Xie, and B. Li, Some open questions in the theory of generalized permutable subgroups, Sci. China Math. 52 (2009), no. 10, 2132–2144.
- [13] X. Guo and K. P. Shum, On c-normal maximal and minimal subgroups of Sylow psubgroups of finite groups, Arch. Math. (Basel) 80 (2003), no. 6, 561–569.
- [14] J. Huang, On \mathfrak{F}_s -quasinormal subgroups of finite groups, Comm. Algebra **38** (2010), no. 11, 4063–4076.
- [15] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [16] D. J. S. Robinson, A Course in the Theorey of Groups, Springer-Verlag, New York, 1982
- [17] P. Schmid, Subgroups permutable [commuting] with all Sylow subgroups, J. Algebra 207 (1998), no. 1, 285–293.
- [18] L. A. Shemetkov and A. N. Skiba, On the XΦ-hypercentre of finite groups, J. Algebra 322 (2009), no. 6, 2106–2117.
- [19] A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory 13 (2010), no. 6, 841–850.
- [20] ______, On the \(\mathfrak{F}\)-hypercentre and the intersection of all \(\mathfrak{F}\)-maximal subgroups of a finite group, J. Pure Appl. Algebra **216** (2012), no. 4, 789–799.
- [21] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35 (1980), no. 3, 210–214.
- [22] Y. Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 945–965.
- [23] X. Yi, L. Miao, H. Zhang, and W. Guo, Finite groups with some 3-supplemented subgroups, J. Algebra Appl. 9 (2010), no. 5, 669–685.

Wenbin Guo

Department of Mathematics

University of Science and Technology of China

Hefei 230026, P. R. China

E-mail address: wbguo@ustc.edu.cn

HAIFENG YU

DEPARTMENT OF MATHEMATICS AND PHYSICS

Hefei University

Hefei, 230601, P. R. China

E-mail address: yuhfslx@hfuu.edu.cn

LI ZHANG

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Hefei 230026, P. R. China

 $E ext{-}mail\ address: {\tt zhang12@mail.ustc.edu.cn}$