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ON πF-EMBEDDED SUBGROUPS OF FINITE GROUPS

Wenbin Guo, Haifeng Yu, and Li Zhang

Abstract. A chief factor H/K of G is called F-central in G provided
(H/K) ⋊ (G/CG(H/K)) ∈ F. A normal subgroup N of G is said to be
πF-hypercentral in G if either N = 1 or N 6= 1 and every chief factor of G
below N of order divisible by at least one prime in π is F-central in G. The
symbol ZπF(G) denotes the πF-hypercentre of G, that is, the product of
all the normal πF-hypercentral subgroups of G. We say that a subgroup
H of G is πF-embedded in G if there exists a normal subgroup T of G

such that HT is s-quasinormal in G and (H ∩T )HG/HG ≤ ZπF(G/HG),
where HG is the maximal normal subgroup of G contained in H. In this
paper, we use the πF-embedded subgroups to determine the structures
of finite groups. In particular, we give some new characterizations of
p-nilpotency and supersolvability of a group.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group, p denotes a prime and π denotes a non-empty subset of the set P of all
primes. Moreover, |G|p is the order of Sylow p-subgroups of G, π(G) denotes
the set of all prime factors of |G| and π(F) =

⋃{π(G) |G ∈ F}, where F is
a non-empty class of groups. All unexplained notation and terminology are
standard, as in [4], [7] and [15].

Let F be a class of groups containing 1 and GF =
⋂
{N |N EG,G/N ∈ F}.

F is called a formation if for every group G, every homomorphic image of
G/GF belongs to F. A formation F is said to be saturated if G ∈ F whenever
G/Φ(G) ∈ F; S-closed (Sn-closed) if H ∈ F whenever H ≤ G ∈ F (H E G ∈ F,
respectively).

We use N, U, and S to denote the saturated formations of all nilpotent
groups, supersolvable groups and solvable groups, respectively.

For a class F of groups, a chief factor H/K of G is called F-central in G if
(H/K)⋊ (G/CG(H/K)) ∈ F. Following [11], a normal subgroup N of G is said
to be πF-hypercentral in G if either N = 1 or N 6= 1 and every chief factor of
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G below N of order divisible by at least one prime in π is F-central in G. The
symbol ZπF(G) denotes the πF-hypercentre of G, that is, the product of all
normal πF-hypercentral subgroups of G. When π = P is the set of all primes,
ZPF(G) is called the F-hypercentre of G and denoted by ZF(G) (see [4] p. 389).
Clearly, for any non-empty set π of primes, ZF(G) ≤ ZπF(G).

It is well known that the F-hypercentre essentially influences the structure
of a group. For example, if all subgroups of G with prime order and order 4 are
contained in Z∞(G), then G is nilpotent (N. Itŏ). If all subgroups with prime
order and order 4 are in ZU(G), then G is supersolvable (B. Huppert, K. Doerk).
Recently, by using the F-hypercentre to study the structure of a group, a large
number of new results were obtained (see, for example, [1,3,5,9–11,18–20,23]).
In connection with this, we naturally ask: what effect does the πF-hypercentre
have on the structure of a group?

Recall that a subgroup H of G is said to be s-quasinormal in G [17] if H
permutes with every Sylow subgroup of G. Following [17], we use Syl(G)⊥ to
denote the set of all s-quasinormal subgroups of G.

In this paper, we will use the πF-hypercentre to study the structure of a
group. Our tool is following.

Definition 1.1. Let F be a non-empty class of groups. A subgroup H of G is
called πF-embedded in G if there exists a normal subgroup T of G such that
HT is s-quasinormal in G (that is, HT ∈ Syl(G)⊥) and (H ∩ T )HG/HG ≤
ZπF(G/HG), where HG is the maximal normal subgroup of G contained in H .

In Section 2, we give some properties of the πF-embedded subgroups and
some related results. In Section 3, we give new characterizations of p-nilpotence
and supersolvability of a group. In Section 4, we list some applications of our
results.

2. Preliminaries

Lemma 2.1 ([11, Lemma 2.2], [3, Lemma 2.8]). Let F be a saturated formation

and π ⊆ π(F). Let N be a normal subgroup of G and A ≤ G. Then:
(1) Every G-chief factor of ZπF(G) of order divisible by at least one prime

in π is F-central.

(2) ZπF(G)N/N ≤ ZπF(G/N).
(3) ZπF(A)N/N ≤ ZπF(AN/N).
(4) If F is (Sn-closed) S-closed and A is a (normal) subgroup of G, then

ZπF(G) ∩ A ≤ ZπF(A).
(5) If Gπ′F = F and G/ZπF(G) ∈ F, then G ∈ F.

(6) Suppose that F is (Sn-closed) S-closed and A is a (normal) subgroup of

G. If Gπ′F = F and A ∈ F, then ZπF(G)A ∈ F.

Lemma 2.2 (see [17]). Let G be a group, H ≤ K ≤ G and A ≤ G.

(1) Syl(G)⊥ is a proper sublattice of the lattice consisting of all subnormal

subgroups of G.
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(2) If A,H ∈ Syl(G)⊥, then 〈A,H〉 ∈ Syl(G)⊥, where 〈A,H〉 is the smallest

subgroup of G containing A and H.

(3) If H ∈ Syl(G)⊥, then H ∈ Syl(K)⊥ and H ∩ A ∈ Syl(A)⊥.
(4) Suppose that A is normal in G. If H ∈ Syl(G)⊥, then HA/A ∈

Syl(G/A)⊥. Moreover, the converse holds in case A ≤ H.

(5) Let A be a p-subgroup of G for some prime p. Then A ∈ Syl(G)⊥ if and

only if Op(G) ≤ NG(A).

Lemma 2.3 ([2, Lemma 2.12]). Let p be a prime divisor of |G| with (|G|, (p−
1)(p2 − 1) · · · (pn − 1)) = 1. If H EG with pn+1

∤ |H | and G/H is p-nilpotent,
then G is p-nilpotent. In particular, if pn+1

∤ |G|, then G is p-nilpotent.

Lemma 2.4. Let F be a saturated formation, G be a group and H ≤ K ≤ G.

(1) H is πF-embedded in G if and only if there exists a normal subgroup T
of G such that HT ∈ Syl(G)⊥, HG ≤ T and (H ∩ T )/HG ≤ ZπF(G/HG).

(2) Suppose that H is normal in G. Then K/H is πF-embedded in G/H if

and only if K is πF-embedded in G.

(3) Suppose that H is normal in G. Then for every πF-embedded subgroup

E of G satisfying (|H |, |E|) = 1, HE/H is πF-embedded in G/H.

(4) Suppose that H is πF-embedded in G. If F is (Sn-closed) S-closed and

K is a (normal) subgroup of G, then H is πF-embedded in K.

(5) If G ∈ F, then every subgroup of G is πF-embedded in G.

(6) Every subgroup of a π′-group G is πF-embedded in G.

Proof. (1) The sufficiency is clear. Now assume that H is πF-embedded in
G and let T be a normal subgroup of G such that HT ∈ Syl(G)⊥ and (H ∩
T )HG/HG ≤ ZπF(G/HG). Let T0 = THG. Then HT0 = HT ∈ Syl(G)⊥ and
(H ∩ T0)/HG = (H ∩ T )HG/HG ≤ ZπF(G/HG).

(2) First assume that K/H is πF-embedded in G/H . Then by (1), G/H has
a normal subgroup T/H such that

(K/H)(T/H) = KT/H ∈ Syl(G/H)⊥, (K/H)G/H = KG/H ≤ T/H

and
((K/H) ∩ (T/H))/(K/H)G/H ≤ ZπF((G/H)/(K/H)G/H).

Note that
((K/H) ∩ (T/H))/(K/H)G/H

∼= (T ∩K)/KG

and
ZπF((G/H)/(K/H)G/H) ∼= ZπF(G/KG).

Also, KT ∈ Syl(G)⊥ by Lemma 2.2(4). Hence K is πF-embedded in G. Analo-
gously, one can show that ifK is πF-embedded in G, thenK/H is πF-embedded
in G/H .

(3) Assume thatH is normal in G and E is πF-embedded in G with (|H |, |E|)
= 1. Then by (1), G has a normal subgroup T such that ET ∈ Syl(G)⊥, EG ≤
T and (E ∩T )/EG ≤ ZπF(G/EG). We now prove that HE/H is πF-embedded
in G/H . By (2), we only need to prove that HE is πF-embedded in G. It is
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clear that (HE)T = H(ET ) ∈ Syl(G)⊥ by Lemma 2.2(2). Since (|H |, |E|) = 1,
(|HE ∩ T : H ∩ T |, |HE ∩ T : E ∩ T |) = 1. So HE ∩ T = (H ∩ T )(E ∩ T )
(see [4, A, 1.6]). Let D = (HE)G. Then (HE ∩ T )D/EG = (E ∩ T )D/EG ≤
ZπF(G/EG)(D/EG). Thus (HE ∩ T )D/D ≤ ZπF(G/D) by Lemma 2.1(2).
This shows that HE is πF-embedded in G.

(4) Let T be a normal subgroup of G such that HT ∈ Syl(G)⊥, HG ≤ T
and (H ∩ T )/HG ≤ ZπF(G/HG). Assume that T1 = K ∩ T . Then HT1 =
K ∩ HT ∈ Syl(K)⊥ by Lemma 2.2(3) and (H ∩ T1)/HG = (H ∩ T )/HG ∩
K/HG ≤ ZπF(K/HG) by Lemma 2.1(4). Since HG ≤ HK , (T1 ∩H)HK/HK ≤
ZπF(K/HK) by Lemma 2.1(2). Hence H is πF-embedded in K.

(5) and (6) are obvious. �

Lemma 2.5 (see [17]). (1) Let H be a p-subgroup of G for some prime p.
Then H is subnormal in G if and only if H ≤ Op(G).

(2) Let H be a subgroup of G with p-power index for some prime p. Then

H is subnormal in G if and only if Op(G) ≤ H.

Lemma 2.6 ([12, Lemma 2.12]). Let p be a prime divisor of G with (|G|, p−
1) = 1. Suppose that P is a Sylow p-subgroup of G such that every maximal

subgroup of P has a p-nilpotent supplement in G. Then G is p-nilpotent.

Lemma 2.7 ([8, Lemma 2.3]). Let F be a saturated formation containing U

and G a group with a normal subgroup E such that G/E ∈ F. If E is cyclic,

then G ∈ F.

3. Main results

Theorem 3.1. Let p be a prime divisor of |G| such that (|G|, (p − 1)(p2 −
1) · · · (pn − 1)) = 1 for some integer n > 1. If there exists a Sylow p-subgroup
P of G such that every n-maximal subgroup (if exists) of P is pU-embedded in

G, then G is p-nilpotent.

Proof. Suppose that the assertion is false and let (G,P ) be a counterexample
such that |G|+ |P | is minimal. Then pn+1 | |G| by Lemma 2.3.

(1) Op′(G) = 1.

Assume that Op′(G) > 1. Let M/Op′(G) be an n-maximal subgroup of
POp′(G)/Op′(G). Then M = Op′ (G)(M ∩ P ), where M ∩ P is an n-maximal
subgroup of P since |P : M ∩ P | = |POp′(G) : M | = pn. Thus M/Op′(G) is
pU-embedded in G/Op′(G) by Lemma 2.4(3). This shows that

(G/Op′(G), POp′ (G)/Op′(G))

satisfies the hypothesis for (G,P ). Thus G/Op′(G) is p-nilpotent by the choice
of G. It follows that G is p-nilpotent, a contradiction.

(2) ZpU(G) = 1.

Suppose that ZpU(G) 6= 1. Let N be a minimal normal subgroup of G
contained in ZpU(G). Then by (1) N ≤ ZU(G) is a subgroup of order p.
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Consequently, N ≤ Z(G) since (|G|, p−1) = 1. By Lemma 2.4(2), (G/N,P/N)
satisfies the hypothesis for (G,P ). Hence G/N is p-nilpotent and so G is p-
nilpotent, a contradiction.

(3) Op(G) 6= 1.

If Op(G) = 1, then (Pn)G = 1 for any n-maximal subgroup Pn of P . Hence
by the hypothesis and (2), G has a normal subgroup T such that PnT ∈
Syl(G)⊥ and Pn ∩ T = 1. Clearly |T |p 6 pn, so T is p-nilpotent by Lemma
2.3. Thus T = 1 by the assumption Op(G) = 1 and (1). This shows that
Pn ∈ Syl(G)⊥, so Pn ≤ Op(G) = 1 by Lemma 2.2(1) and Lemma 2.5(1), which
contradicts pn+1 | |G|. Thus Op(G) 6= 1.

(4) Op(G) is a minimal normal subgroup of G and G = Op(G) ⋊M , where

M is p-nilpotent.

Let N be a minimal normal subgroup of G contained in Op(G). Then G/N
is p-nilpotent similar as the proof in (2). Since the class of all p-nilpotent
groups is a saturated formation, N is the unique minimal normal subgroup of
G contained in Op(G) and N * Φ(G). It follows that G = N ⋊ M for some
maximal subgroup M of G. By [4, A, 8.4], Op(G)∩M EG, so Op(G)∩M = 1
by the uniqueness of N . It follows that Op(G) = N(Op(G) ∩M) = N . Thus
Op(G) is a minimal normal subgroup of G.

(5) Final contradiction.

Let Pn be an arbitrary n-maximal subgroup of P . Then (Pn)G = 1 or
Op(G) by (4). If (Pn)G = Op(G) for any n-maximal subgroup Pn of P , then
G = Op(G)M = PnM . This shows that every n-maximal subgroup of P
has a p-nilpotent supplement in G. Consequently, every maximal subgroup
of P has a p-nilpotent supplement in G. So G is p-nilpotent by Lemma 2.6.
This contradiction shows that there exists at least one non-trivial n-maximal
subgroup Pn of P with (Pn)G = 1. Then by the hypothesis, G has a normal
subgroup T such that PnT ∈ Syl(G)⊥ and Pn ∩ T = 1 by (2). Now by Lemma
2.3, T is p-nilpotent. Hence T = 1 or Op(G) by (1) and (4). Assume that
T = Op(G). Since PnT ∈ Syl(G)⊥, we have that Pn ≤ Op(G) = T by Lemma
2.2(1) and Lemma 2.5(1). Thus Pn = Pn ∩ T = 1, a contradiction. Therefore
T = 1. Then Pn ∈ Syl(G)⊥, so Pn ≤ Op(G) and Op(G) ≤ NG(Pn) by Lemma
2.2(1)(5) and Lemma 2.5(1). Clearly, the number of subgroups in the conjugate
class of Pn in P is equal to |P : P ∩ NG(Pn)| = |G : NG(Pn)| > 1, which is a
p-power. Let |Op(G)| = pd and |Pn| = pk. As Op(G) is elementary abelian by
(4), the number of subgroups of order |Pn| is

f(d, k) = (pd−1)(pd−1−1)···(pd−k+1−1)
(pk−1)(pk−1−1)···(p−1)

(see [15, III, 8.5]). But p ∤ f(d, k), a contradiction. This completes the proof.
�

Corollary 3.2. Let p be a prime divisor of |G| with (|G|, (p−1)(p2−1) · · · (pn−
1)) = 1 for some integer n > 1. Suppose that G has a normal subgroup H such
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that G/H is p-nilpotent. If H has a Sylow p-subgroup P such that every n-
maximal subgroup (if exists) of P is pU-embedded in G, then G is p-nilpotent.

Proof. First suppose that H = P . Let K/P be the normal Hall p′-subgroup
of G/P . By the Schur-Zassenhaus Theorem K = P ⋊ Kp′ , for some Hall p′-
subgroup Kp′ of K. Obviously, Kp′ is also a Hall p′-subgroup of G. By Lemma
2.4(4) every n-maximal subgroup of P is pU-embedded in K. Hence K is p-
nilpotent by Theorem 3.1 and so K = P × Kp′ . Then Kp′ is normal in G.
Consequently G is p-nilpotent.

Finally, assume that H > P . Then by Lemma 2.4(4) and Theorem 3.1, H
is p-nilpotent. Let Hp′ be the normal Hall p′-subgroup of H . Now by Lemma
2.4(3), (G/Hp′ , H/Hp′) satisfies the assumptions. Hence G/Hp′ is p-nilpotent
by induction. It follows that G is p-nilpotent. �

We use Np to denote the saturated formation of all p-nilpotent groups.

Theorem 3.3. Let p be a prime divisor of |G| with (|G|, (p−1)(p2−1) · · · (pn−
1)) = 1 for some integer n > 1. Let H be a normal subgroup of G such that

G/H is p-nilpotent and P be an arbitrary Sylow p-subgroup of H. Suppose

that every subgroup L of P ∩ GN
p

of order pn or 4 (when p = 2, n = 1, P
is non-abelian and L is cyclic) not contained in Z∞(G) is pU-embedded in G.

Then G is p-nilpotent.

Proof. Suppose that the result is false and let (G,H) be a counterexample for
which |G| + |H | is minimal. Clearly, GN

p ≤ H . We proceed via the following
steps.

(1) |P | > pn+1 (it follows directly from Lemma 2.3).

(2) Op′(G) = 1.

Assume that N = Op′(G) > 1. If |(G/N)N
p |p = |GN

p

N/N |p < pn+1,
then G/N is p-nilpotent by Lemma 2.3. We may, therefore, assume that
|GN

p

N/N |p > pn+1. Let L/N be a subgroup of PN/N ∩ GN
p

N/N of or-
der pn or 4 (when p = 2 and n = 1, PN/N is non-abelian and L/N is cyclic)
not contained in Z∞(G/N), where P is an arbitrary Sylow p-subgroup of H .
Since L = (L ∩ P )N and (|N |, p) = 1, |L/N | = |L ∩ P | = pn or 4. Also, since
L ∩ P ≤ GN

p

N and (|L ∩ P |, |GN
p

N : GN
p |) = 1, we have L ∩ P ≤ GN

p

. By
Lemma 2.1(2) L ∩ P * Z∞(G). Suppose that |L ∩ P | = 4. Then P is non-
abelian and L ∩ P is cyclic owing to the G-isomorphism L/N ∼= L ∩ P . Hence
by hypothesis and Lemma 2.4(3), L/N is pU-embedded in G/N . This shows
that (G/N,HN/N) satisfies the hypothesis. The choice of (G,H) implies that
G/N is p-nilpotent. Thus G is p-nilpotent, a contradiction.

(3) Every proper subgroup M of G is p-nilpotent.

Considering (M,M ∩H). Clearly, every Sylow p-subgroup of M ∩H has the
form M∩P for some Sylow p-subgroup P of H . By Lemma 2.3, we may assume
that |(H∩M)∩MN

p |p = |MN
p |p > pn+1. Let L be a subgroup of (P∩M)∩MN

p

of order pn or 4 (when p = 2 and n = 1, P∩M is non-abelian and L is cyclic) not
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contained in Z∞(M). Obviously P ∩MN
p ≤ P ∩ (M ∩GN

p

) ≤ P ∩GN
p

. Also,
L * Z∞(G) by Lemma 2.1(4). Hence by the hypothesis and Lemma 2.4(4), L
is pU-embedded in M . The choice of (G,H) implies that M is p-nilpotent.

(4) G is a minimal non-nilpotent group.

By (3), G is a minimal non-p-nilpotent group. Then G is a minimal non-
nilpotent group by Itŏ’s Theorem (see [15, IV, 5.4]). Hence by [7, (3.4.7) and
(3.4.11)], G = P ⋊Q, where P is the normal Sylow p-subgroup of G and Q a
cyclic Sylow q-subgroup ofG with q 6= p, and the following hold: (i) P/Φ(P ) is a
chief factor ofG; (ii) P = GN = GNp ; (iii) the exponent of P is p or 4 (when P is
a non-abelian 2-subgroup); (iv) Φ(G) = Z∞(G); (v) F (G) = Fp(G) = PΦ(G).

(5) F (G) = P and Φ(G) = Φ(P ).

By (2) and (4), Fp(G) = P = F (G) = PΦ(G). Then Φ(P ) ≤ Φ(G) ≤ P ,
so Φ(G) = Φ(P ) or P since P/Φ(P ) is a chief factor of G. If Φ(G) = P , then
G = Q, a contradiction. Thus Φ(G) = Φ(P ).

(6) P has a proper subgroup L of order pn or 4 such that L * Φ(P ).

Take x ∈ P \ Φ(P ) and let E = 〈x〉. Then |E| = p or 4 (when P is a
non-abelian 2-subgroup). It follows that P has a subgroup L of order pn or
cyclic of order 4 such that E ≤ L and L * Φ(P ).

(7) Final contradiction.

Clearly LG ≤ Φ(P ). By the hypothesis L is pU-embedded in G. Let T be
a normal subgroup of G such that LT ∈ Syl(G)⊥, LG ≤ T and (L ∩ T )/LG ≤
ZpU(G/LG). If T = G, then (L ∩ T )/LG = L/LG ≤ ZpU(G/LG). It follows
from Lemma 2.1(2) that LΦ(P )/Φ(P ) ≤ ZpU(G/Φ(P )). Hence P/Φ(P ) ∩
ZpU(G/Φ(P )) 6= 1, so P/Φ(P ) ≤ ZpU(G/Φ(P )) by (i) in (4). Then |P/Φ(P )| =
p and P/Φ(P ) ≤ Z(G/Φ(P )). Therefore G/Φ(P ) is p-nilpotent since P =
GNp , and so G is p-nilpotent, a contradiction. Now assume T < G. Then
T ≤ Fp(G) = P by (3). As TΦ(P ) is normal in G, TΦ(P ) = Φ(P ) or P by (i).
If TΦ(P ) = P , then P = T and so L∩T = L. Similar as the above, we obtain a
contradiction. Hence T ≤ Φ(P ). As LT ∈ Syl(G)⊥, Q ≤ Op(G) ≤ NG(LT ) by
Lemma 2.2(5). Then Q ≤ NG(LTΦ(P )) = NG(LΦ(P )). Also, since P/Φ(P ) is
elementary abelian by (i), it follows that LΦ(P )/Φ(P ) is normal in G/Φ(P ).
Thus LΦ(P ) = P = L. The final contradiction completes the proof. �

Theorem 3.4. G is supersolvable if and only if G has a normal subgroup H
such that G/H is supersolvable and every maximal subgroup of any non-cyclic

Sylow p-subgroup of H is pU-embedded in G, for any prime p ∈ π(H).

Proof. Since the necessity is obvious, we only need to prove the sufficiency.
Suppose that the sufficiency is false and let (G,H) be a counterexample such
that |G|+ |H | is minimal. Then:

(1) Let N is a normal subgroup of G contained in H. If N is either a p-
subgroup for some prime p ∈ π(H) or a Hall subgroup of H, then the hypothesis

holds for (G/N,H/N) and so G/N is supersolvable.
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Firstly, (G/N)/(H/N) ∼= G/H is supersolvable. Assume that N is a p-group
for some prime p ∈ π(H). Let Q/N be a non-cyclic Sylow q-subgroup of H/N
and M/N be an arbitrary maximal subgroup of Q/N . If q = p, then Q is a non-
cyclic Sylow p-subgroup of H and M/N is pU-embedded in G/N by Lemma
2.4(2). Now assume q 6= p. Let M1 be a Sylow q-subgroup of M and Q1 be a
Sylow q-subgroup of Q containing M1. Then Q = N ⋊Q1 and M = N ⋊M1

by the Schur-Zassenhaus Theorem. Clearly |Q1 : M1| = |Q/N : M/N | = q
and Q1 is a non-cyclic Sylow q-subgroup of H . Hence M/N is qU-embedded in
G/N by Lemma 2.4(3). This shows that the hypothesis holds for (G/N,H/N).
Analogously, one can show that the hypothesis still holds for (G/N,H/N) when
N is a Hall subgroup of H .

(2) H is a Sylow tower group of supersolvable type.

Let p be the smallest prime divisor of |H | and Hp be a Sylow p-subgroup of
H . If Hp is cyclic, then H is p-nilpotent by [16, (10.1.9)]. Otherwise, H is still
p-nilpotent by Lemma 2.4(4) and Theorem 3.1. Let U be the normal Hall p′-
subgroup of H . Then by Lemma 2.4(4), U satisfies the hypothesis. Therefore
H is a Sylow tower group of supersolvable type by induction.

(3) If N is a normal Hall subgroup of H, then N = H.

Clearly, (G,N) satisfies the hypothesis. Hence it follows from (1).

(4) H is a non-cyclic q-subgroup for some prime q (it follows directly from

(2), (3) and Lemma 2.7).

(5) H is a minimal normal subgroup of G.

By (1) and (4), G has an unique minimal normal subgroup R of G contained
in H and R * Φ(G). Let M be a maximal subgroup of G such that G = R⋊M .
By (4), H ≤ F (G) ≤ CG(R), so H ∩ M E G. This implies that H ∩M = 1.
Thus H = R(H ∩M) = R.

(6) Final contradiction.

By (5), G = H ⋊M where M is a maximal subgroup of G and M ∼= G/H
is supersolvable. Let Mq be a Sylow q-subgroup of M . Then Gq = HMq is a
Sylow q-subgroup of G. Let H∗ = G∗

q ∩H where G∗
q is a maximal subgroup of

Gq containing Mq. Then H∗ is a non-trivial maximal subgroup of H . Clearly,
(H∗)G = 1 by (5). By (4), H∗ is qU-embedded in G. Let T be a normal
subgroup of G such that H∗T ∈ Syl(G)⊥ and H∗∩T ≤ ZqU(G). If H∩T = H ,
then H∗ ∩ T = H∗ ≤ ZqU(G). This implies that H ≤ ZqU(G) is a cyclic
subgroup of order q, which contradicts (4). We may, therefore, assume that
H ∩ T = 1. Then H∗ = H∗(H ∩ T ) = H ∩H∗T ∈ Syl(G)⊥ by Lemma 2.2(1).
Therefore G = Op(G)Gq ≤ NG(H

∗) by Lemma 2.2(5). This shows that H∗ is
normal in G. The contradiction completes the proof. �

The following theorem is a dual of Theorem 3.4.

Theorem 3.5. G is supersolvable if and only if G has a normal subgroup H
such that G/H is supersolvable and every cyclic subgroup of H of order p or
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order 4 (when p = 2 and H has a non-abelian Sylow 2-subgroup) is pU-embedded

in G, for any prime p ∈ π(H).

Proof. Since the necessity is obvious, we only need to prove the sufficiency.
Suppose that the result is false and let (G,H) be a counterexample such that
|G|+ |H | is minimal. Then:

(1) G is a minimal non-supersolvable group.

Let M be a proper subgroup of G. Consider (M,M ∩H). Firstly, M/(M ∩
H) ∼= HM/H ≤ G/H is superslovable. Also, every cyclic subgroup of M ∩H
of order p or order 4 (if M ∩ H has a non-abelian Sylow 2-subgroup) is pU-
emdedded in M by Lemma 2.4(4). This shows that (M,M ∩ H) satisfies the
hypothesis for (G,H). Hence M is supersolvable by the choice of (G,H).
This shows that G is a minimal non-supersolvable group, and so G is solvable
(see [16, (10.3.4)]).

(2) H is a q-group for some prime q.

Let p be the smallest prime divisor of |H |. By Lemma 2.4(4), every subgroup
of H with order p or 4 (if p = 2 and H has a non-abelian Sylow 2-subgroup)
is pU-embedded in H . Hence H is p-nilpotent by Theorem 3.3. Let U be the
normal Hall p′-subgroup of H . U satisfies the hypothesis by Lemma 2.4(4).
Therefore H is a Sylow tower group of supersolvable type by induction.

Let Hq be the normal Sylow q-subgroup of H , where q is the largest prime
divisor of |H |. By Lemma 2.4(3), (G/Hq, H/Hq) satisfies the hypothesis. Hence
G/Hq is supersolvable. If Hq < H , then G is supersolvable by the choice of
(G,H). Thus (2) holds.

(3) q is the largest prime divisor of |G|. Consequently q > 2.

Assume that p (6= q) is the largest prime divisor of |G|. Let Gp be a Sylow
p-subgroup of G. Then HGp/H is normal in G/H by the supersolvability of
G/H . By Lemma 2.4(4) and Theorem 3.3, HGp is q-nilpotent. It follows that
Gp is normal in G. Considering (G/Gp, HGp/Gp), then G/Gp is supersolvable
by Lemma 2.4(3) and the choice of (G,H). This implies that G ∼= G/(H ∩Gp)
is supersolvable, a contradiction.

(4) The Sylow q-subgroup Gq of G is normal in G.

It follows from (3) and the supersolvability of G/H .

(5) H = Gq = GU with exponent q and H/Φ(H) is a non-cyclic chief factor

of G.

By (1), (3), (4) and [7, (3.4.2) and (3.4.7)], we have: (i) Gq = GU; (ii)
GU/Φ(GU) is a chief factor of G; (iii) the exponent of GU is q. Since Gq =
GU ≤ H ≤ Gq, we have that H = Gq = GU. By Lemma 2.7, we see that
H/Φ(H) is non-cyclic.

(6)H/Φ(H) has a minimal subgroup which does not belong to Syl(G/Φ(H))⊥.
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Assume that every minimal subgroup ofH/Φ(H) belongs to Syl(G/Φ(H))⊥.
By (5) and Lemma 2.2(2), H/Φ(H) has a maximal subgroup which belongs to
Syl(G/Φ(H))⊥. Then Lemma 2.2(5) implies that H/Φ(H) has a maximal
subgroup which is normal in G/Φ(H). This implies that H/Φ(H) is of order
q, which contradicts (5).

(7) Final contradiction.

Let X/Φ(H) be a minimal subgroup of H/Φ(H) which does not belong
to Syl(G/Φ(H))⊥. Take x ∈ X \ Φ(H). Then L = 〈x〉 is of order q and
LΦ(H) = X . Clearly LG = 1. Let T be a normal subgroup of G such that
LT ∈ Syl(G)⊥ and L ∩ T ≤ ZqU(G). By (5), (H ∩ T )Φ(H) = Φ(H) or H .
If (H ∩ T )Φ(H) = H , then H ≤ T and L ≤ ZqU(G). Now similar as the
proof (7) in Theorem 3.3, we have |H/Φ(H)| = q, a contradiction. Hence
(H ∩ T )Φ(H) = Φ(H). Then X/Φ(H) = L(H ∩ T )Φ(H)/Φ(H) = (H/Φ(H))∩
(LTΦ(H)/Φ(H)) ∈ Syl(G/Φ(H))⊥ by Lemma 2.2(1)(4), which contradicts the
choice of X/Φ(H). The contradiction completes the proof. �

4. Some applications

Recall that a subgroup H of G is said to be: c-normal ([22]) in G if there
exists a normal subgroup N of G such that G = HN and H ∩ N ≤ HG; Fh-
normal in G ([6]) if there exists a normal subgroup K of G such that HK is a
normal Hall subgroup of G and (H∩K)HG/HG ≤ ZF(G/HG); Fs-quasinormal
in G ([14]) if there exists a normal subgroup T of G such that HT ∈ Syl(G)⊥

and (H ∩ T )HG/HG ≤ ZF(G/HG).
It is easy to see that all above subgroups are πF-embedded for any non-empty

set π of primes. However, the following example shows that the converse is not
true.

Example. Let G = S4. Then ZU(G) = 1 and Z3U(G) = G. Assume that H =
{1, (12)(34)}. Clearly HG = 1. Since {1, (123), (132)}H 6= H{1, (123), (132)},
H is not s-quasinormal in G. For any non-trivial normal subgroup T of G, we
have that HT = T ∈ Syl(G)⊥, H ∩ T = H * ZU(G) and H ∩ T ≤ Z3U(G).
This shows that H is 3U-embedded but not Us-quasinormal in G.

Many known results are corollaries of our Theorems, for example, Theorem
5.2 in [6], Theorem 3.4 in [13], Theorem 3.3 in [14], Theorem 1 and Theorem 3
in [21], Theorem 4.1 and Theorem 4.2 in [22] and so on.
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