• Title/Summary/Keyword: G-Equation

Search Result 1,692, Processing Time 0.032 seconds

THE ($\frac{G'}{G}$)- EXPANSION METHOD COMBINED WITH THE RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.351-367
    • /
    • 2011
  • In this article, we construct exact traveling wave solutions for nonlinear PDEs in mathematical physics via the (1+1)- dimensional combined Korteweg- de Vries and modified Korteweg- de Vries (KdV-mKdV) equation, the (1+1)- dimensional compouned Korteweg- de Vries Burgers (KdVB) equation, the (2+1)- dimensional cubic Klien- Gordon (cKG) equation, the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona Mahony (GZK-BBM) equation and the modified Korteweg- de Vries - Zakharov- Kuznetsov (mKdV-ZK) equation, by using the (($\frac{G'}{G}$) -expansion method combined with the Riccati equation, where G = $G({\xi})$ satisfies the Riccati equation $G'({\xi})=A+BG^2$ and A, B are arbitrary constants.

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION ON GROUPS AND AN APPLICATION

  • Elfen, Heather Hunt;Riedel, Thomas;Sahoo, Prasanna K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2165-2182
    • /
    • 2017
  • Let G be a group and $\mathbb{C}$ the field of complex numbers. Suppose ${\sigma}:G{\rightarrow}G$ is an endomorphism satisfying ${{\sigma}}({{\sigma}}(x))=x$ for all x in G. In this paper, we first determine the central solution, f : G or $G{\times}G{\rightarrow}\mathbb{C}$, of the functional equation $f(xy)+f({\sigma}(y)x)=2f(x)+2f(y)$ for all $x,y{\in}G$, which is a variant of the quadratic functional equation. Using the central solution of this functional equation, we determine the general solution of the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s) for all $p,q,r,s{\in}G$, which is a variant of the equation f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s) studied by Chung, Kannappan, Ng and Sahoo in [3] (see also [16]). Finally, we determine the solutions of this equation on the free groups generated by one element, the cyclic groups of order m, the symmetric groups of order m, and the dihedral groups of order 2m for $m{\geq}2$.

ON STABILITY OF THE EQUATION - g(x+p,y+q) = ${\varphi}(x,y)g(x,y)$

  • Shin, Dong-Soo;Kim, Gwang-Hui
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.1017-1027
    • /
    • 2000
  • On the positive real number, we obtain the Hyers-Ulam stability and a stability in the sense of R. Ger for the generalized beta function g(x+p,y+q) = ${\varphi}(x,y)g(x,y)$ in the following settings: $$\mid$g(x+p,y+q)-{\varphi}(x,y)g(x,y)$\mid${\leq}{\delta}$ and $$\mid$\frac{g(x+p,y+q)}{\varphi(x,y)g(x,y)}-1$\mid${\leq}{\psi}(x,y). As a consequence we obtain stability theorems for the gamma functional equation and the beta functional equation.

APPROXIMATION OF DRYGAS FUNCTIONAL EQUATION IN QUASI-BANACH SPACE

  • RAVINDER KUMAR SHARMA;SUMIT CHANDOK
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.469-485
    • /
    • 2023
  • In this paper, we investigate the Hyers-Ulam-Rassias stability for a Drygas functional equation g(u + v) + g(u - v) = 2g(u) + g(v) + g(-v) in the setting of quasi-Banach space using fixed point approach. Also, we give general results on hyperstability of a Drygas functional equation. The results obtain in this paper extend various previously known results in the setting of quasi-Banach space. Some examples are also illustrated.

STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • Let ℝ be the set of real numbers, f, g : ℝ → ℝ and �� ≥ 0. In this paper, we consider the stability of partially pexiderized exponential-radical functional equation $$f({\sqrt[n]{x^N+y^N}})=f(x)g(y)$$ for all x, y ∈ ℝ, i.e., we investigate the functional inequality $$\|f({\sqrt[n]{x^N+y^N}})-f(x)g(y)\|{\leq}{\epsilon}$$ for all x, y ∈ ℝ.

OBSERVATIONS ON A FURTHER IMPROVED ($\frac{G}{G}$) - EXPANSION METHOD AND THE EXTENDED TANH-METHOD FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.253-264
    • /
    • 2012
  • In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in the mathematical physics via the (1+1)-dimensional Boussinesq equation by using the following two methods: (i) A further improved ($\frac{G}{G}$) - expansion method, where $G=G({\xi})$ satisfies the auxiliary ordinary differential equation $[G^{\prime}({\xi})]^2=aG^2({\xi})+bG^4({\xi})+cG^6({\xi})$, where ${\xi}=x-Vt$ while $a$, $b$, $c$ and $V$ are constants. (ii) The well known extended tanh-function method. We show that some of the exact solutions obtained by these two methods are equivalent. Note that the first method (i) has not been used by anyone before which gives more exact solutions than the second method (ii).

THE GENERAL SOLUTION AND APPROXIMATIONS OF A DECIC TYPE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

  • Arunkumar, Mohan;Bodaghi, Abasalt;Rassias, John Michael;Sathya, Elumalai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.287-328
    • /
    • 2016
  • In the current work, we define and find the general solution of the decic functional equation g(x + 5y) - 10g(x + 4y) + 45g(x + 3y) - 120g(x + 2y) + 210g(x + y) - 252g(x) + 210g(x - y) - 120g(x - 2y) + 45g(x - 3y) - 10g(x - 4y) + g(x - 5y) = 10!g(y) where 10! = 3628800. We also investigate and establish the generalized Ulam-Hyers stability of this functional equation in Banach spaces, generalized 2-normed spaces and random normed spaces by using direct and fixed point methods.

THE STABILITY OF K-EXPONENTIAL EQUATIONS

  • Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.929-935
    • /
    • 1999
  • By applications of the stability for a class of functional equa-tions we obtain the hyers-Ulam stability for the equations of the form g($\chi$+y)=kg($\chi$)g(y) in the following setting; |g($\chi$+y)-kg($\chi$)g(y)|$\leq$$\Delta$($\chi$,y).