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ON THE STABILITY OF THE FUNCTIONAL EQUATION
g +y+mzy) =g(x)+ fy) +2f(y) +yg(x)

YONG-S00 JuNG

ABSTRACT. In this note, we investigate the Hyers-Ulam stability and the hypersta-
bility of the Pexider type functional equation

g +y+ay) =gx) + fly) +2f(y) +yg(x).

1. INTRODUCTION

The problem of stability of functional equations was originally raised by S.M.
Ulam [10] in 1940: given a group V, a metric group W with metric d(-,-), and
a € > 0, does there exist a § > 0 such that if a mapping f : V — W satisfies
d(f(xy), f(z)f(y)) < 6 for all x, y € V, then a homomorphism g : V' — W exists
with d(f(x),g(x)) <eforallz € V 7

For Banach spaces the Ulam problem was first solved by D.H. Hyers [3] in 1941,
which states that if 6 > 0 and f : X — Y is a mapping with X, Y Banach spaces,
such that

[fz+y) = fle) = fly) <o
for all =, y € X, then there exists a unique additive mapping T : X — Y such that

If(z) —T(z)| <0
for all z, y € X.
Due to this fact, the additive functional equation f(x 4+ y) = f(z) + f(y) is
said to have the Hyers-Ulam stability property on (X,Y’). This terminology is also
applied to other functional equations and the generalization of this property has

been studied by many authors (see, for example, [1], [2], [4], [7])-
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During the 34th International Symposium on Functional Equations, Gy. Maksa

[5] posed the problem concerning the Hyers-Ulam stability of the functional equation
(1.1) flxy) = 2f(y) +yf(x)

on the interval (0, 1], which is usually called a derivation (or left derivation).

J. Tabor [9] gave an answer to the question of Maksa by proving the Hyers-Ulam
stability of the functional equation (1.1) on the interval (0,1]. Also Zs. Péles [6]
remarked that the functional equation (1.1) for real-valued functions has a hyper-
stability on the interval [1, 00).

We here introduce the Pexider type functional equation motivated by the func-

tional equation (1.1):

(1.2) g(x+y+azy) =g(x)+ fy) +2f(y) +yg().

In this note, we will solve the Pexider type functional equation (1.2) and then by
referring the ideas of J. Tabor [9] and Zs. Péles [6], the Hyers-Ulam stability and
the hyperstability of the equation (1.2) will be investigated, respectively.

2. SOLUTIONS OF THE FUNCTIONAL EQUATION (1.2)

In this section, we set the interval I = (—1, oo). It is easy to see that the pair
of the real-valued functions f(z) = (z + 1)In(z + 1) and g(z) = f(z) + a(z + 1)
for some nonzero a € R is a solution of the functional equation (1.2) on . In the
following theorem, we will find out the general solution of the functional equation
(1.2) on 1.

Theorem 2.1. Let X be a real (or complex) vector space. The pair of mappings
fyg : I — X satisfies the functional equation (1.2) for all x,y € I if and only if
there exists a solution D : (0,00) — X of the functional equation (1.1) such that

f(x)=D(x+1) and g(x)=D(x+1)+ (z+1)a
hold for some a € X and for all x € 1

Proof. (Necessity) Let us define a mapping D : (0, co) — X by D(z) = f(z—1) for
all x € (0,00). Let x = 0 in the equation (1.2). Then we have

9(y) = f(y) + (y + Dg(0),
that is, g(x) = f(x) + (x + 1)a for all x € I, where a = g(0). We claim that D is a

solution of the functional equation (1.1).
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Indeed, for all z, y € (0,00), we have

D(zy) = f(zy — 1) = g(zy — 1) — (zy)a

(=D +@y-D+@-1E-1) - (zy)a

-+ fly-D+@-fly— D+ - gz —1)—(zy)a
fly—1) +yg(z —1) — (zy)a

=zf(y—1) +y{g(z — 1) — za} = 2D(y) + yD().

Therefore, D is a solution of the functional equation (1.1), as claimed, and

g
g\r
x

fx)=D(x+1) and g(z)=D(x+1)+ (z+ 1)a
are true for all x € 1.
(Sufficiency) For all x,y € I, we get
gax+y+ay) =D+y+azy+ 1)+ (z+y+azy+1)a
=D((z+1)(y+ 1)+ (z+1)(y +1a
=(@+1)D(y+1)+ (y+1)D@+1)+ (z+1)(y + 1)a
=zDy+1)+Dy+ 1)+ (y+1){D@+1)+ (z+1)a}
=9(@) + f(y) +2f(y) + yg(x).

3. HYERS-ULAM STABILITY OF THE FUNCTIONAL EQUATION (1.2)

In this section, we will denote I = (—1,0]. We first need a theorem of F. Skof [8]
concerning the stability of the additive functional equation f(z + y) = f(x) + f(v)

on a restricted domain:

Theorem 3.1. Let X be a real (or complex) Banach space. Given ¢ > 0, let a
mapping f : [0,¢) — X satisfy the inequality

If(@+y) = fl@) = flyl <o

for some § > 0 and for all z, y € [0,¢) with x +y € [0,¢). Then there exists an
additive mapping A : R — X such that

| f(z) — A(x)|| < 30
for all x € [0, ¢).
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Theorem 3.2. Let X be a real (or complex) Banach space, and let g, f : I — X be
mappings satisfying the inequality

(3.1) lg(z +y +xy) —g(x) — fy) —xf(y) —yg(z)|| <6

for some § > 0 and for all x, y € I. Then there exist mappings h,p : I — X
satisfying the functional equation (1.2) such that

(3.2) lg(z) — h(z)|| < (12e 4 1)0
and

(3.3) 1f(z) = p(x)]] < (12e 4 2)0
forallx € I.

Proof. Let us define the mappings G, H : I — X by
x x
Glz) = ji)l and H(z) = 51)1
for all z € I. Then, from (3.1), we see that G and H satisfy the inequality
)
(z+1)(y+1)
for all 2,y € I. Define the mappings U,V : [0,00) — X by

1G(z +y+ay) — G(z) - H(y)| <

Uwu)=G(e " —1) and V(u)=H(e ™ —1)
for all u € [0,00). Then we obtain
(3.4) |U(u+v) —U(u) — V()| < de’
for all u,v € [0,00). Putting v = 0 in (3.4), we have
(3.5) IV (0)[] < de*
for all u € [0,00). Analogously, if we set u =0 in (3.4), then we get
(3.6) [U(v) =U(0) = V(v)]| < de”
for all v € [0,00). We now define a mapping F : [0,00) — X by
(3.7) F(u) =U(u) = U(0) — V(0)
for all u € [0,00). We claim that the inequality

(3.8) | F(u+v) — F(u) — F(v)|| < 36"
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holds for all u,v € [0,00). In fact, it follows from (3.4), (3.5), (3.6) and (3.7) that

[ (u +v) = F(u) = F(u)]]
= |U(u+v) = Uu) — Uv) + U(0) + V(0)]

< U +0) =U(u) = V()| + [[VO)| + [|V(v) = U(v) + U(0)]]

< 5e¥ TV 4 fet + fev

< 36e T,
for all u, v € [0,00). The inequality (3.8) means that the inequality

|F(u+v) — F(u) — F(v)]| < 3de°

is valid for all u, v € [0, ¢) with u+v < ¢, where ¢ > 1 is an arbitrary given constant.

According to Theorem 3.1, there exists an additive mapping A : R — X such

that
1F(u) = A(u)|| < 95e°
for all u € [0,¢). If we let ¢ — 1 in the last inequality, we then get
(3.9) |F(u) = A(uw)]| < (9€)é
for all uw € [0, 1]. Moreover, it follows from (3.8) that

1F (w+1) = Fu) = FQ)|| < 36+
HF(U + 2) — F(u —+ 1) — F(l)” < 356u+2

|F(u+k)—Fu+k—1)— F(1)| < 35e*™*
for all uw € [0,1] and k¥ € N. Summing up these inequalities, we obtain
(3.10) |F(u+k) — F(u) — kF(1)|| < (3e)d - evtk
for all uw € [0,1] and k € N. We assert that

(3.11) ||F(v) — A(v)|| < (12€)6 - €”

for all v € [0,00). For, let v > 0 and let k € {0} UN be given with v — k € [0, 1].

Then, by (3.9) and (3.10), we have
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IF@) — A@)| < |F(v) — F(v — k) — kF(1)]
+Fw—k) = Aw = k)| + [[A(R) = kF)]]
< (3e)d - e’ + (9e)d + ||A(k) — kF (1)
< (3e)d - e’ + (9e)d + k||A(L) — F(1)]|
< (3e)d - e’ 4 (9e)d + (9e)dv
< (3e)o(e” +3(1 +v))
< (12e)6 - e".
Now, from (3.11) and the definitions of F, G, H and V, it follows that

|G(x) — G(0) — H(0) — A(—In(z + 1)|| < (12¢)6 - o~ In(z+1) _ (;2_;3)15

for all x € I. Using (3.5), we have

0

H _ <5 —In(z+1) _
1H(0) = [V(0)]| < de po

for all x € I. Therefore, we obtain

|G(z) = A(=In(z + 1)) = G(0)]|
< |G(z) = G(0) = H(0) = A(=In(z + 1| + [[H(0)]

<(126+1)5’
- r+1
i.e.,
g(x) (12e+1)0
. — — A(— <=
o g0 s ] < U
forall z € I.

Let D : (0,1] — X be a mapping defined by D(z) = zA(—1Inz) for all z € (0, 1].
Then D satisfies the functional equation (1.1). If we set p(z) = D(x 4+ 1) and
h(xz) = p(z)+ (x+1)g(0) for all z € I, then h and p satisfy the functional equation
(1.2), ie.,

Wz +y +xy) = h(z) + p(y) + zp(y) + yh(z)
and we obtain the inequality (3.2) by (3.12). Using (3.6), (3.7) and (3.11), we have
V() = A(v) = V()| = [V(v) = A(v) + F(v) = U(v) + U(0)]]
<|[F(v) = A@)[| + |U(v) = U(0) = V(v)]|
< (12e)de” + 0’ = (12e + 1)de”
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for all v € [0,00) and so employing the inequality (3.5), we get

(3.13) 1V (v) = AQ)|| < [[V(v) = A(v) = V(0)[ + [[V(0)]
< (12e + 1)de’ + de’ = (12e + 2)0e”
for all v € [0, oo). From (3.13) and the definitions of V' and H, it follows that

(12e +2)6
r+1
for all x € I. Hence we arrive at the inequality (3.3). This completes the proof. [

H:p +1 A(=In(z + 1))” < (12e + 2)5671“(9”1) —

4. HYPERSTABILITY OF THE FUNCTIONAL EQUATION (1.2)

In this section, we will investigate the hyperstability of the functional equation
(1.2) on the interval I, where I = [0, c0).

Theorem 4.1. Let X be a real (or complex) Banach space. If there exist mappings
g, [+ I — X satisfying the inequality

(4.1) lg(z +y+xy) —g(z) — f(y) —2f(y) —yg(x)|| <9I

for some § > 0 and for all z,y € I under the condition g(0) = f(0), then g = f on
I and g(= f) satisfies the functional equation (1.2) for all x,y € I.

Proof. Defining the mappings G, H : [ — X by
g(x) f(z)
= — H =
G(z) 1 and H(x) 1
for all x € I and defining the mappings U,V : [ — X by

U(u) =G(e" —1) and V(u) = H(e" —1)
for all u € I, it follows from (4.1) that
(4.2) |1U(w+v) = Ulu) — V(v)|| < ge~ )

for all u,v € I. We will show that U(u +v) = U(u) + V(v) for all u,v € I.
Let € > 0 be given. Then the inequality (4.2) implies that there exists a ¢ > 0
satisfying

(43) [U(+0) = Ulw) = V)l < o

for all u,v € I with u+v > c.
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Suppose that positive real numbers u and v are given. Let m and n be integers

great than 1. Then it is easy to see that

(4.4) V(inu) = V((n—1u) —V(u) =U(mv+u) — U(mv) — V(u)
+U((mv+u)+ (n—1)u) —U(mv +u) — V((n—1)u))
— (U(mv + nu) — U(mv) — V(nu))

If m is so large that m > (¢ + u)/v, the last equality implies

€
(4.5) IV (nw) = V((n = u) = V(u)ll < 5
for all w € I and all integers n > 1. The relation

n

V(nu) —nV(u) => (V(ku) = V((k - u) — V(u))

k=2
together with (4.5), produces the inequality
n—1
12
for all u € I and all integers n > 1. Let u = 0 in (4.3). Then we obtain the inequality

(4.6) |V (nu) —nV(u)|| <

€

|U@) =0 -Vl < o

for all v € I with v > ¢ which gives the inequality
€
(4.7) IU(v) = V()] < [|U(v) = V(v) = UQO)| + [TO)] < g + 1U0)]]

for all v € I with v > c.

On the other hand, let u € [0,00) with u > ¢. Then the inequality (4.3) with
such an v and v = 0 yields
€
36
Note that we have ||U(0)|| = ||V (0)| since ¢g(0) = f(0). Applying (4.3), (4.7) and
(4.8) with this equality, we see that the inequality

(4.8) V) <

1U(u+v) =U(u) =U)[ < [|U(u+v) =U(u) = V()| +[[V(v) = U]

g g g
%+%+\|U(O)||<E

holds for all u,v € I with v > ¢. Replacing V' by U in (4.4) and then following the

same process to obtain the inequality (4.6), we have

<

n—1

(4.9) U (nu) — nU(u)|| <

3
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for all u € I and all integers n > 1. Obviously, it follows from (4.6) and (4.9) that

(U (nu+nv) — U(nu) — V(nv)) —n(U(u +v) — U(u) — V(v))]
<||U(nu + nv) — nU(u + v)|| + [|[U(nu) — nU(uw)|| + |V (nv) — nV (v)||
<n—1 +n—1 +n—1 7( e
I A TR T
for all u,v € [0,00) with (u,v) # (0, 0). Dividing by n both sides of the last

inequality and then letting n — oo and considering the fact that (1/n)(U(nu +

nv) — U(nu) — V(nv)) — 0 as n — oo on account of (4.3), we get
7
U+ v) = Uw) = V()| < 5
for all u,v € I with (u,v) # (0,0). Also, we see that
1U(040) =U(0) = V(0] = [VO)|l < 2= 36
by using (4.8). Therefore, the inequality (4.3) holds for all u,v € I. Since € > 0 was
arbitrary, we conclude that the relation U(u + v) = U(u) + V(v) is established for
all u,v € I.
Now, according to the definitions of U and G, we get

xg(f)l = G(z) = U(In(z + 1))

forallz €1, ie.,
g(z) = (x+ 1)U(In(z + 1))

for all z € I. From the definitions of V and H, we have

a{f)l =H(x)=V(In(z+ 1))

for all x € I, i.e.,
flz)=(z+1)V(ln(zx + 1))
for all € I. Since U(u+ v) = U(u) + V(v) for all u,v € I, we see that g and f

satisfy the functional equation (1.2) for all z,y € I. In fact, g = f on I.
Letting = 0 in (1.2), we obtain

(4.10) 9(y) = f(y) + (y + 1)g(0)

for all y € I. Since ¢g(0) = f(0), it follows from (4.10) that g(0) = 0. Hence
the equality (4.10) gives g(x) = f(x) for all x € I. The proof of the theorem is
completed. O
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