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ON THE STABILITY OF THE FUNCTIONAL EQUATION

g(x+ y + xy) = g(x) + f(y) + xf(y) + yg(x)

Yong-Soo Jung

Abstract. In this note, we investigate the Hyers-Ulam stability and the hypersta-
bility of the Pexider type functional equation

g(x+ y + xy) = g(x) + f(y) + xf(y) + yg(x).

1. Introduction

The problem of stability of functional equations was originally raised by S.M.

Ulam [10] in 1940: given a group V , a metric group W with metric d(·, ·), and

a ϵ > 0, does there exist a δ > 0 such that if a mapping f : V → W satisfies

d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ V , then a homomorphism g : V → W exists

with d(f(x), g(x)) ≤ ϵ for all x ∈ V ?

For Banach spaces the Ulam problem was first solved by D.H. Hyers [3] in 1941,

which states that if δ > 0 and f : X → Y is a mapping with X, Y Banach spaces,

such that

∥f(x+ y)− f(x)− f(y)∥ ≤ δ

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ δ

for all x, y ∈ X.

Due to this fact, the additive functional equation f(x + y) = f(x) + f(y) is

said to have the Hyers-Ulam stability property on (X,Y ). This terminology is also

applied to other functional equations and the generalization of this property has

been studied by many authors (see, for example, [1], [2], [4], [7]).
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During the 34th International Symposium on Functional Equations, Gy. Maksa

[5] posed the problem concerning the Hyers-Ulam stability of the functional equation

(1.1) f(xy) = xf(y) + yf(x)

on the interval (0, 1], which is usually called a derivation (or left derivation).

J. Tabor [9] gave an answer to the question of Maksa by proving the Hyers-Ulam

stability of the functional equation (1.1) on the interval (0, 1]. Also Zs. Páles [6]

remarked that the functional equation (1.1) for real-valued functions has a hyper-

stability on the interval [1,∞).

We here introduce the Pexider type functional equation motivated by the func-

tional equation (1.1):

(1.2) g(x+ y + xy) = g(x) + f(y) + xf(y) + yg(x).

In this note, we will solve the Pexider type functional equation (1.2) and then by

referring the ideas of J. Tabor [9] and Zs. Páles [6], the Hyers-Ulam stability and

the hyperstability of the equation (1.2) will be investigated, respectively.

2. Solutions of the Functional Equation (1.2)

In this section, we set the interval I = (−1, ∞). It is easy to see that the pair

of the real-valued functions f(x) = (x + 1) ln(x + 1) and g(x) = f(x) + a(x + 1)

for some nonzero a ∈ R is a solution of the functional equation (1.2) on I. In the

following theorem, we will find out the general solution of the functional equation

(1.2) on I.

Theorem 2.1. Let X be a real (or complex) vector space. The pair of mappings

f, g : I → X satisfies the functional equation (1.2) for all x, y ∈ I if and only if

there exists a solution D : (0,∞) → X of the functional equation (1.1) such that

f(x) = D(x+ 1) and g(x) = D(x+ 1) + (x+ 1)a

hold for some a ∈ X and for all x ∈ I

Proof. (Necessity) Let us define a mapping D : (0, ∞) → X by D(x) = f(x− 1) for

all x ∈ (0,∞). Let x = 0 in the equation (1.2). Then we have

g(y) = f(y) + (y + 1)g(0),

that is, g(x) = f(x) + (x+ 1)a for all x ∈ I, where a = g(0). We claim that D is a

solution of the functional equation (1.1).
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Indeed, for all x, y ∈ (0,∞), we have

D(xy) = f(xy − 1) = g(xy − 1)− (xy)a

= g((x− 1) + (y − 1) + (x− 1)(y − 1))− (xy)a

= g(x− 1) + f(y − 1) + (x− 1)f(y − 1)+(y − 1)g(x− 1)−(xy)a

= xf(y − 1) + yg(x− 1)− (xy)a

= xf(y − 1) + y{g(x− 1)− xa} = xD(y) + yD(x).

Therefore, D is a solution of the functional equation (1.1), as claimed, and

f(x) = D(x+ 1) and g(x) = D(x+ 1) + (x+ 1)a

are true for all x ∈ I.

(Sufficiency) For all x, y ∈ I, we get

g(x+ y + xy) = D(x+ y + xy + 1) + (x+ y + xy + 1)a

= D((x+ 1)(y + 1)) + (x+ 1)(y + 1)a

= (x+ 1)D(y + 1) + (y + 1)D(x+ 1) + (x+ 1)(y + 1)a

= xD(y + 1) +D(y + 1) + (y + 1){D(x+ 1) + (x+ 1)a}

= g(x) + f(y) + xf(y) + yg(x).

�

3. Hyers-Ulam Stability of the Functional Equation (1.2)

In this section, we will denote I = (−1, 0]. We first need a theorem of F. Skof [8]

concerning the stability of the additive functional equation f(x+ y) = f(x) + f(y)

on a restricted domain:

Theorem 3.1. Let X be a real (or complex) Banach space. Given c > 0, let a

mapping f : [0, c) → X satisfy the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ δ

for some δ ≥ 0 and for all x, y ∈ [0, c) with x + y ∈ [0, c). Then there exists an

additive mapping A : R → X such that

∥f(x)−A(x)∥ ≤ 3δ

for all x ∈ [0, c).
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Theorem 3.2. Let X be a real (or complex) Banach space, and let g, f : I → X be

mappings satisfying the inequality

∥g(x+ y + xy)− g(x)− f(y)− xf(y)− yg(x)∥ ≤ δ(3.1)

for some δ > 0 and for all x, y ∈ I. Then there exist mappings h, p : I → X

satisfying the functional equation (1.2) such that

∥g(x)− h(x)∥ ≤ (12e+ 1)δ(3.2)

and

∥f(x)− p(x)∥ ≤ (12e+ 2)δ(3.3)

for all x ∈ I.

Proof. Let us define the mappings G,H : I → X by

G(x) =
g(x)

x+ 1
and H(x) =

f(x)

x+ 1

for all x ∈ I. Then, from (3.1), we see that G and H satisfy the inequality

∥G(x+ y + xy)−G(x)−H(y)∥ ≤ δ

(x+ 1)(y + 1)

for all x, y ∈ I. Define the mappings U, V : [0,∞) → X by

U(u) = G(e−u − 1) and V (u) = H(e−u − 1)

for all u ∈ [0,∞). Then we obtain

(3.4) ∥U(u+ v)− U(u)− V (v)∥ ≤ δeu+v

for all u, v ∈ [0,∞). Putting v = 0 in (3.4), we have

(3.5) ∥V (0)∥ ≤ δeu

for all u ∈ [0,∞). Analogously, if we set u = 0 in (3.4), then we get

(3.6) ∥U(v)− U(0)− V (v)∥ ≤ δev

for all v ∈ [0,∞). We now define a mapping F : [0,∞) → X by

(3.7) F (u) = U(u)− U(0)− V (0)

for all u ∈ [0,∞). We claim that the inequality

(3.8) ∥F (u+ v)− F (u)− F (v)∥ ≤ 3δeu+v
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holds for all u, v ∈ [0,∞). In fact, it follows from (3.4), (3.5), (3.6) and (3.7) that

∥F (u+ v)− F (u)− F (v)∥

= ∥U(u+ v)− U(u)− U(v) + U(0) + V (0)∥

≤ ∥U(u+ v)− U(u)− V (v)∥+ ∥V (0)∥+ ∥V (v)− U(v) + U(0)∥

≤ δeu+v + δeu + δev

≤ 3δeu+v.

for all u, v ∈ [0,∞). The inequality (3.8) means that the inequality

∥F (u+ v)− F (u)− F (v)∥ ≤ 3δec

is valid for all u, v ∈ [0, c) with u+v < c, where c > 1 is an arbitrary given constant.

According to Theorem 3.1, there exists an additive mapping A : R → X such

that

∥F (u)−A(u)∥ ≤ 9δec

for all u ∈ [0, c). If we let c → 1 in the last inequality, we then get

(3.9) ||F (u)−A(u)|| ≤ (9e)δ

for all u ∈ [0, 1]. Moreover, it follows from (3.8) that

∥F (u+ 1)− F (u)− F (1)∥ ≤ 3δeu+1

∥F (u+ 2)− F (u+ 1)− F (1)∥ ≤ 3δeu+2

...

∥F (u+ k)− F (u+ k − 1)− F (1)∥ ≤ 3δeu+k

for all u ∈ [0, 1] and k ∈ N. Summing up these inequalities, we obtain

(3.10) ||F (u+ k)− F (u)− kF (1)|| ≤ (3e)δ · eu+k

for all u ∈ [0, 1] and k ∈ N. We assert that

(3.11) ||F (v)−A(v)|| ≤ (12e)δ · ev

for all v ∈ [0,∞). For, let v ≥ 0 and let k ∈ {0} ∪ N be given with v − k ∈ [0, 1].

Then, by (3.9) and (3.10), we have
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∥F (v)−A(v)∥ ≤ ||F (v)− F (v − k)− kF (1)∥

+ ∥F (v − k)−A(v − k)∥+ ∥A(k)− kF (1)∥

≤ (3e)δ · ev + (9e)δ + ∥A(k)− kF (1)∥

≤ (3e)δ · ev + (9e)δ + k∥A(1)− F (1)∥

≤ (3e)δ · ev + (9e)δ + (9e)δv

≤ (3e)δ(ev + 3(1 + v))

≤ (12e)δ · ev.

Now, from (3.11) and the definitions of F , G, H and V , it follows that

∥G(x)−G(0)−H(0)−A(− ln(x+ 1)∥ ≤ (12e)δ · e− ln(x+1) =
(12e)δ

x+ 1

for all x ∈ I. Using (3.5), we have

∥H(0) = ∥V (0)∥ ≤ δe− ln(x+1) =
δ

x+ 1

for all x ∈ I. Therefore, we obtain

∥G(x)−A(− ln(x+ 1))−G(0)∥

≤ ∥G(x)−G(0)−H(0)−A(− ln(x+ 1)∥+ ∥H(0)∥

≤ (12e+ 1)δ

x+ 1
,

i.e.,

(3.12)
∥∥∥ g(x)

x+ 1
− g(0)−A(− ln(x+ 1))

∥∥∥ ≤ (12e+ 1)δ

x+ 1

for all x ∈ I.

Let D : (0, 1] → X be a mapping defined by D(x) = xA(− lnx) for all x ∈ (0, 1].

Then D satisfies the functional equation (1.1). If we set p(x) = D(x + 1) and

h(x) = p(x) + (x+ 1)g(0) for all x ∈ I, then h and p satisfy the functional equation

(1.2), i.e.,

h(x+ y + xy) = h(x) + p(y) + xp(y) + yh(x)

and we obtain the inequality (3.2) by (3.12). Using (3.6), (3.7) and (3.11), we have

∥V (v)−A(v)− V (0)∥ = ∥V (v)−A(v) + F (v)− U(v) + U(0)∥

≤ ∥F (v)−A(v)∥+ ∥U(v)− U(0)− V (v)∥

≤ (12e)δev + δev = (12e+ 1)δev
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for all v ∈ [0,∞) and so employing the inequality (3.5), we get

∥V (v)−A(v)∥ ≤ ∥V (v)−A(v)− V (0)∥+ ∥V (0)∥(3.13)

≤ (12e+ 1)δev + δev = (12e+ 2)δev

for all v ∈ [0,∞). From (3.13) and the definitions of V and H, it follows that∥∥∥ f(x)

x+ 1
−A(− ln(x+ 1))

∥∥∥ ≤ (12e+ 2)δe− ln(x+1) =
(12e+ 2)δ

x+ 1

for all x ∈ I. Hence we arrive at the inequality (3.3). This completes the proof. �

4. Hyperstability of the Functional Equation (1.2)

In this section, we will investigate the hyperstability of the functional equation

(1.2) on the interval I, where I = [0,∞).

Theorem 4.1. Let X be a real (or complex) Banach space. If there exist mappings

g, f : I → X satisfying the inequality

∥g(x+ y + xy)− g(x)− f(y)− xf(y)− yg(x)∥ ≤ δ(4.1)

for some δ > 0 and for all x, y ∈ I under the condition g(0) = f(0), then g = f on

I and g(= f) satisfies the functional equation (1.2) for all x, y ∈ I.

Proof. Defining the mappings G,H : I → X by

G(x) =
g(x)

x+ 1
and H(x) =

f(x)

x+ 1

for all x ∈ I and defining the mappings U, V : I → X by

U(u) = G(eu − 1) and V (u) = H(eu − 1)

for all u ∈ I, it follows from (4.1) that

(4.2) ∥U(u+ v)− U(u)− V (v)∥ ≤ δe−(u+v)

for all u, v ∈ I. We will show that U(u+ v) = U(u) + V (v) for all u, v ∈ I.

Let ε > 0 be given. Then the inequality (4.2) implies that there exists a c > 0

satisfying

(4.3) ∥U(u+ v)− U(u)− V (v)∥ <
ε

36

for all u, v ∈ I with u+ v > c.
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Suppose that positive real numbers u and v are given. Let m and n be integers

great than 1. Then it is easy to see that

V (nu)− V ((n− 1)u)− V (u) = U(mv + u)− U(mv)− V (u)(4.4)

+ U((mv + u) + (n− 1)u)− U(mv + u)− V ((n− 1)u))

− (U(mv + nu)− U(mv)− V (nu))

If m is so large that m > (c+ u)/v, the last equality implies

(4.5) ∥V (nu)− V ((n− 1)u)− V (u)∥ <
ε

12

for all u ∈ I and all integers n > 1. The relation

V (nu)− nV (u) =

n∑
k=2

(V (ku)− V ((k − 1)u)− V (u))

together with (4.5), produces the inequality

(4.6) ∥V (nu)− nV (u)∥ <
n− 1

12
ε

for all u ∈ I and all integers n > 1. Let u = 0 in (4.3). Then we obtain the inequality

∥U(v)− U(0)− V (v)∥ <
ε

36

for all v ∈ I with v > c which gives the inequality

(4.7) ∥U(v)− V (v)∥ ≤ ∥U(v)− V (v)− U(0)∥+ ∥U(0)∥ <
ε

36
+ ∥U(0)∥

for all v ∈ I with v > c.

On the other hand, let u ∈ [0,∞) with u > c. Then the inequality (4.3) with

such an u and v = 0 yields

(4.8) ∥V (0)∥ <
ε

36
.

Note that we have ∥U(0)∥ = ∥V (0)∥ since g(0) = f(0). Applying (4.3), (4.7) and

(4.8) with this equality, we see that the inequality

∥U(u+ v)− U(u)− U(v)∥ ≤ ∥U(u+ v)− U(u)− V (v)∥+ ∥V (v)− U(v)∥

<
ε

36
+

ε

36
+ ∥U(0)∥ <

ε

12

holds for all u, v ∈ I with v > c. Replacing V by U in (4.4) and then following the

same process to obtain the inequality (4.6), we have

(4.9) ∥U(nu)− nU(u)∥ <
n− 1

4
ε
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for all u ∈ I and all integers n > 1. Obviously, it follows from (4.6) and (4.9) that

∥(U(nu+ nv)− U(nu)− V (nv))− n(U(u+ v)− U(u)− V (v))∥

≤ ∥U(nu+ nv)− nU(u+ v)∥+ ∥U(nu)− nU(u)∥+ ∥V (nv)− nV (v)∥

<
n− 1

4
ε+

n− 1

4
ε+

n− 1

12
ε =

7

12
(n− 1)ε

for all u, v ∈ [0,∞) with (u, v) ̸= (0, 0). Dividing by n both sides of the last

inequality and then letting n → ∞ and considering the fact that (1/n)(U(nu +

nv)− U(nu)− V (nv)) → 0 as n → ∞ on account of (4.3), we get

∥U(u+ v)− U(u)− V (v)∥ <
7

12
ε

for all u, v ∈ I with (u, v) ̸= (0, 0). Also, we see that

∥U(0 + 0)− U(0)− V (0)∥ = ∥V (0)∥ <
ε

36

by using (4.8). Therefore, the inequality (4.3) holds for all u, v ∈ I. Since ε > 0 was

arbitrary, we conclude that the relation U(u + v) = U(u) + V (v) is established for

all u, v ∈ I.

Now, according to the definitions of U and G, we get

g(x)

x+ 1
= G(x) = U(ln(x+ 1))

for all x ∈ I, i.e.,

g(x) = (x+ 1)U(ln(x+ 1))

for all x ∈ I. From the definitions of V and H, we have

f(x)

x+ 1
= H(x) = V (ln(x+ 1))

for all x ∈ I, i.e.,

f(x) = (x+ 1)V (ln(x+ 1))

for all x ∈ I. Since U(u + v) = U(u) + V (v) for all u, v ∈ I, we see that g and f

satisfy the functional equation (1.2) for all x, y ∈ I. In fact, g = f on I.

Letting x = 0 in (1.2), we obtain

(4.10) g(y) = f(y) + (y + 1)g(0)

for all y ∈ I. Since g(0) = f(0), it follows from (4.10) that g(0) = 0. Hence

the equality (4.10) gives g(x) = f(x) for all x ∈ I. The proof of the theorem is

completed. �
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