DOI QR코드

DOI QR Code

THE ($\frac{G'}{G}$)- EXPANSION METHOD COMBINED WITH THE RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E. (Mathematics Department, Faculty of Science, Zagazig University)
  • Received : 2010.01.24
  • Accepted : 2010.08.31
  • Published : 2011.01.30

Abstract

In this article, we construct exact traveling wave solutions for nonlinear PDEs in mathematical physics via the (1+1)- dimensional combined Korteweg- de Vries and modified Korteweg- de Vries (KdV-mKdV) equation, the (1+1)- dimensional compouned Korteweg- de Vries Burgers (KdVB) equation, the (2+1)- dimensional cubic Klien- Gordon (cKG) equation, the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona Mahony (GZK-BBM) equation and the modified Korteweg- de Vries - Zakharov- Kuznetsov (mKdV-ZK) equation, by using the (($\frac{G'}{G}$) -expansion method combined with the Riccati equation, where G = $G({\xi})$ satisfies the Riccati equation $G'({\xi})=A+BG^2$ and A, B are arbitrary constants.

Keywords

References

  1. M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical models, Appl.Math.Comput, 190 (2007) 988-996.
  2. M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge Univ. Press, Cambridge, 1991.
  3. C.L.Bai and H.Zhao, Generalized method to construct the solitonic solutions to (3+1)-dimensional nonlinear equation, Phys. Letters A, 354 (2006) 428-436. https://doi.org/10.1016/j.physleta.2006.01.084
  4. A.Bekir, Application of the $\frac{G^{1}}{G}$-expansion method for nonlinear evolution equa- tions, Phys.Letters A, 372 (2008) 3400-3406. https://doi.org/10.1016/j.physleta.2008.01.057
  5. A.Bekir , The tanh-coth method combined with the Riccati equation for solving nonlinear equation, Chaos, Solitons and Fractals, 40 (2009) 1467-1474. https://doi.org/10.1016/j.chaos.2007.09.029
  6. Y.Chen and Q.Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1) dimensional dispersive long wave equation, Chaos, Solitons and Fractals, 24 (2005) 745-757 . https://doi.org/10.1016/j.chaos.2004.09.014
  7. E.G. Fan, Extended tanh- function method and its applications to nonlinear equa- tions, Phys.Letters A, 277 (2000) 212-218. https://doi.org/10.1016/S0375-9601(00)00725-8
  8. J.H.He and X.H.Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006) 700-708. https://doi.org/10.1016/j.chaos.2006.03.020
  9. R.Hirota, Exact solution of the KdV equation for multiple collisions of solutions, Phys. Rev. Letters 27 (1971) 1192-1194. https://doi.org/10.1103/PhysRevLett.27.1192
  10. J.Q.Hu, An algebraic method exactly solving two high dimensional nonlinear evolution equations, Chaos, Solitons and Fractals, 23 (2005) 391-398. https://doi.org/10.1016/j.chaos.2004.02.044
  11. N.A. Kudryashov, Exact solutions of the generalized Kuramoto- Sivashinsky equation, Phys. Letters A, 147 (1990) 287-291. https://doi.org/10.1016/0375-9601(90)90449-X
  12. N.A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Letters A, 155 (1991) 269-275. https://doi.org/10.1016/0375-9601(91)90481-M
  13. S.Liu, Z.Fu, S.D. Liu and Q.Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Letters A, 289 (2001) 69-74. https://doi.org/10.1016/S0375-9601(01)00580-1
  14. D. Lu, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos, Solitons and Fractals, 24 (2005) 1373-1385. https://doi.org/10.1016/j.chaos.2004.09.085
  15. M.R.Miura, Backlund Transformation, Springer-Verlag, Berlin,1978.
  16. C.Rogers and W.F.Shadwick, Backlund Transformations, Academic Press, New York,1982.
  17. Z.Wang and H.Q.Zhang, A new generalized Riccati equation rational expansion method to a class of nonlinear evolution equation with nonlinear terms of any order, Appl.Math.Comput, 186 (2007) 693-704. https://doi.org/10.1016/j.amc.2006.08.015
  18. M.Wang and Y.Zhou,The periodic wave equations for the Klein-Gordon-Schordinger equa-tions, Phys. Letters A, 318 (2003) 84-92 . https://doi.org/10.1016/j.physleta.2003.07.026
  19. M.Wang and X. Li, Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Letters A, 343 (2005) 48-54 . https://doi.org/10.1016/j.physleta.2005.05.085
  20. M.Wang and X.Li, Applications of F-expansion to periodic wave solutions for a new Hamil-tonian amplitude equation, Chaos, Solitons and Fractals 24 (2005) 1257- 1268. https://doi.org/10.1016/j.chaos.2004.09.044
  21. M.L.Wang, X.Z.Li and J.L.Zhang, Sub-ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation, Phys. Letters A, 363 (2007) 96-101. https://doi.org/10.1016/j.physleta.2006.10.077
  22. D.S.Wang, Y.J.Ren and H.Q.Zhang, Further extended sinh-cosh and sin-cos methods and new non traveling wave solutions of the (2+1)-dimensional dispersive long wave equations, Appl. Math.E-Notes, 5 (2005) 157-163.
  23. M.Wang, X.Li and J.Zhang, The $\frac{G^{1}}{G}$- expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys.Letters A, 372 (2008) 417-423. https://doi.org/10.1016/j.physleta.2007.07.051
  24. Z.Wang and H.Q.Zhang, Many new kinds exact solutions to (2+1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation, Appl. Math. Comput. 186 (2007) 693-704. https://doi.org/10.1016/j.amc.2006.08.015
  25. A.M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation, Appl. Math. Comput., 169 (2005) 713-725. https://doi.org/10.1016/j.amc.2004.09.062
  26. A.M.Wazwaz, New solutions of distinct physical structures to high - dimensional nonlinear evolution equations, Appl. Math. Comput., 196 (2008) 363-368. https://doi.org/10.1016/j.amc.2007.06.002
  27. J.Weiss, M.Tabor and G.Garnevalle, The Painleve property for partial differential equa-tions, J.Math.Phys. 24 (1983) 522-526. https://doi.org/10.1063/1.525721
  28. G. Xu, An elliptic equation method and its applications in nonlinear evolution equations, Chaos, Solitons and Fractals, 29 (2006) 942-947. https://doi.org/10.1016/j.chaos.2005.08.058
  29. Z.Yan, Abundant families of Jacobi elliptic functions of the (2+1)-dimensional integrable Davey-Stawartson-type equation via a new method, Chaos,Solitons and Fractals, 18 (2003) 299-309. https://doi.org/10.1016/S0960-0779(02)00653-7
  30. E.Yomba, The extended Fan's sub-equation method and its application to KdV-mKdV, BKK and variant Boussinesq equations, Phys. Letters A, 336 (2005) 463-476. https://doi.org/10.1016/j.physleta.2005.01.027
  31. E.Yusufoglu, New solitary solutions for the MBBM equations using Exp-function method, Phys. Letters A, 372 (2008) 442-446. https://doi.org/10.1016/j.physleta.2007.07.062
  32. E.Yusufoglu and A.Bekir, Exact solution of coupled nonlinear evolution equations, Chaos, Solitons and Fractals, 37 (2008) 842-848. https://doi.org/10.1016/j.chaos.2006.09.074
  33. E.M.E.Zayed, H.A. Zedan and K.A.Gepreel, On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV equations, Chaos,Solitons and Fractals, 22 (2004) 285-303. https://doi.org/10.1016/j.chaos.2003.12.045
  34. E.M.E.Zayed, H.A.Zedan and K.A.Gepreel, Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int.J.nonlinear Sci. and Nume.Simul.5 (2004) 221-234.
  35. E.M.E.Zayed and K.A.Gepreel, The $\frac{G^{1}}{G}$- expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics, J. Math. Phys., 50 (2009) 013502-013513. https://doi.org/10.1063/1.3033750
  36. E.M.E.Zayed, The $\frac{G^{1}}{G}$- expansion method and its applications to some nonlinear evolu- tion equations in the mathematical physics, J. Appl. Math. Computing, 30 (2009) 89-103. https://doi.org/10.1007/s12190-008-0159-8
  37. E.M.E.Zayed, New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized $\frac{G^{1}}{G}$- expansion method, J.Phys. A: Math.Theoretical., 42 (2009) 195202-195214. https://doi.org/10.1088/1751-8113/42/19/195202
  38. S.L.Zhang, B. Wu and S.Y.Lou, Painleve analysis and special solutions of generalized Broer-Kaup equations, Phys. Lett. A, 300 (2002) 40-48. https://doi.org/10.1016/S0375-9601(02)00688-6
  39. S. Zhang, Application of Exp-function method to higher dimensional nonlinear evolution equation, Chaos, Solitons and Fractals 38 (2008) 270-276. https://doi.org/10.1016/j.chaos.2006.11.014
  40. S. Zhang, Application of Exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer- Kaup- Kupershmidt equations, Phys. Letters A, 372 (2008)1873-1880. https://doi.org/10.1016/j.physleta.2007.10.086
  41. S. Zhang and T.C. Xia, A further improved tanh-function method exactly solving the (2+1)-dimensional dispersive long wave equations, Appl.Math.E-Notes, 8 (2008) 58-66.
  42. S. Zhang and T.C. Xia, Symbolic computation and new families of exact non-traveling wave solutions to (3+1)- dimensional Kadomtsev- Petviashvili equation, Appl.Math. Comput., 181 (2006) 319-331. https://doi.org/10.1016/j.amc.2006.01.033
  43. S. Zhang and T.C.Xia, A further improved extended Fan sub-equation method and its application to the (3+1)- dimensional Kadomstov- Petviashvili equatrion, Phys. Letters A, 356 (2006) 119-123. https://doi.org/10.1016/j.physleta.2006.03.027
  44. S.Zhang, J.Tong and W.Wang, A generalized $\frac{G^{1}}{G}$- expansion method for the mKdV equation with variable coefficients, Phys.Letters A, 372 (2008) 2254-2257. https://doi.org/10.1016/j.physleta.2007.11.026
  45. J. Zhang, X.Wei and Y.Lu, A generalized $\frac{G^{1}}{G}$- expansion method and its applications, Phys.Letters A, 372 (2008) 3653-3658. https://doi.org/10.1016/j.physleta.2008.02.027
  46. S.D.Zheng, T.C.Xia and H.Q.Zhang, New exact traveling wave solutions for compound KdV-Burgers equations in mathematical physics, Appl. Math.E-Notes. 2 (2002) 45-50.

Cited by

  1. Generalized and Improved (G'/G)-Expansion Method Combined with Jacobi Elliptic Equation vol.61, pp.6, 2011, https://doi.org/10.1088/0253-6102/61/6/02
  2. Exact solutions of the (2+1)-dimensional cubic Klein-Gordon equation and the (3+1)-dimensional Zakharov-Kuznetsov equation using the modified simple equation method vol.15, pp.1, 2011, https://doi.org/10.1016/j.jaubas.2013.05.001
  3. An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: The perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation vol.3, pp.1, 2011, https://doi.org/10.1080/23311835.2016.1277506