STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

Chang-Kwon Choi

Abstract. Let \mathbb{R} be the set of real numbers, $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $\epsilon \geq 0$. In this paper, we consider the stability of partially pexiderized exponentialradical functional equation

$$
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y)
$$

for all $x, y \in \mathbb{R}$, i.e., we investigate the functional inequality

$$
\left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) g(y)\right| \leq \epsilon
$$

for all $x, y \in \mathbb{R}$.

1. Introduction

Throughout this paper, we denote by \mathbb{R}, X, and Y the set of real numbers, a real normed space, and a real Banach space, respectively, and $\epsilon \geq 0$ will be fixed constants. A mapping $f: X \rightarrow Y$ is called a monomial of degree N if it satisfies the functional equation

$$
\Delta_{y}^{N} f(x)-N!f(y)=0
$$

for all $x, y \in X$, where the difference operator Δ_{y} is defined by $\Delta_{y} f(x)=$ $f(x+y)-f(x)$ for all $x, y \in X$ and $\Delta_{y}^{N}(N=2,3,4, \ldots)$ are defined by the iteration $\Delta_{y}^{N+1} f=\Delta_{y}\left(\Delta_{y}^{N} f\right)$ for all $N=1,2,3, \ldots$. Using iterations we can see that

$$
\Delta_{y}^{N} f(x)=\sum_{k=0}^{N}\binom{N}{k}(-1)^{k} f(x+(N-k) y)
$$

for all $x, y \in X$. A mapping $f: X \rightarrow Y$ is said to be exponential if f satisfies the functional equation

$$
f(x+y)-f(x) f(y)=0
$$

Received January 5, 2019; Revised November 5, 2020; Accepted December 30, 2020.
2010 Mathematics Subject Classification. 39B82.
Key words and phrases. Exponential functional equation, monomial functional equation, pexiderized functional equation, radical functional equation, stability.
for all $x, y \in X$. A mapping $f: X \rightarrow Y$ is said to be radical if f satisfies the functional equation

$$
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) f(y)
$$

for all $x, y \in X$.
The Ulam problem for functional equations goes back to 1940 when S. M. Ulam proposed the following [9]:

Let f be a mapping from a group G_{1} to a metric group G_{2} with metric d (\cdot, \cdot) such that

$$
d(f(x y), f(x) f(y)) \leq \epsilon
$$

Then does there exist a group homomorphism h and $\theta_{\epsilon}>0$ such that

$$
d(f(x), h(x)) \leq \theta_{\epsilon}
$$

for all $x \in G_{1}$?
This problem was solved affirmatively by D. H. Hyers under the assumption that G_{2} is a Banach space (see Hyers [6], Hyers-Isac-Rassias [7]).

As a result of the Ulam problem for exponential functional equation, it is proved that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x+y)-f(x) f(y)| \leq \epsilon
$$

for all $x, y \in \mathbb{R}$, then f is either a bounded function satisfying

$$
|f(x)| \leq \frac{1}{2}(1+\sqrt{1+4 \epsilon})
$$

for all $x \in \mathbb{R}$, or an unbounded function satisfying

$$
f(x+y)=f(x) f(y)
$$

for all $x, y \in \mathbb{R}$ (see Baker [1] or Baker-Lawrence-Zorzitto [2]). Due to Székelyhidi [8], the above result was generalized to the case when the difference $f(x+y)-f(x) f(y)$ is bounded for each fixed y (or equivalently, for each fixed x). In particular, Chung, Choi and Lee [5] investigated the functional inequality

$$
|f(x+y)-f(x) g(y)| \leq \epsilon
$$

for all $x, y \in G$, where $f, g: G \rightarrow \mathbb{R}$ and G be a commutative group which is 2-divisible. Also, Choi in [4] showed that stability of functional equation

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) f(y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$, i.e., we consider the functional inequalities

$$
\begin{aligned}
& \left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) f(y)\right| \leq \phi(x) \\
& \left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) f(y)\right| \leq \psi(x, y)
\end{aligned}
$$

for all $x, y \in \mathbb{R}$, where $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$is an arbitrary function and $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$ satisfies a certain condition.

In this paper, we investigate the stability of partially pexiderized exponent-ial-radical functional equation

$$
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y)
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$, i.e., we investigate the functional inequality

$$
\left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) g(y)\right| \leq \epsilon
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$.

2. Solutions of partially pexiderized exponential-radical functional equation

In this section, we consider the solutions of the functional equation

$$
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y)
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$. We exclude the trivial case when $f(x)=0$ or $g(x)=0$ for all $x \in \mathbb{R}$. We need the following lemma.
Lemma 2.1 ([3, Corollary 2.2]). A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies functional equation

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) f(y) \tag{2.1}
\end{equation*}
$$

if and only if there exists a solution $h: P \rightarrow \mathbb{R}$ to the functional equation

$$
\begin{equation*}
h(x+y)=h(x) h(y) \tag{2.2}
\end{equation*}
$$

such that $f(x)=h\left(x^{N}\right)$ for all $x \in \mathbb{R}$, where $P:=\left\{x^{N} \mid x \in \mathbb{R}\right\}$.
Theorem 2.2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies functional equation

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y) \tag{2.3}
\end{equation*}
$$

if and only if there exists a solution $h: P \rightarrow \mathbb{R}$ to the functional equation (2.2) such that

$$
\left\{\begin{array}{l}
f(x)=\alpha h\left(x^{N}\right), \tag{2.4}\\
g(x)=h\left(x^{N}\right)
\end{array}\right.
$$

for all $x \in \mathbb{R}$, where $P:=\left\{x^{N} \mid x \in \mathbb{R}\right\}$ and $\alpha \in \mathbb{R} \backslash\{0\}$.
Proof. Replacing x by y and y by x in (2.3) we have

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(y) g(x) \tag{2.5}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Subtracting (2.5) from (2.3) we have

$$
\begin{equation*}
g(x) f(y)=f(x) g(y) \tag{2.6}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. We fix $y=y_{0}$ with $f\left(y_{0}\right) \neq 0$ and obtain

$$
\begin{equation*}
g(x)=c f(x) \tag{2.7}
\end{equation*}
$$

for all $x \in \mathbb{R}$, where $c \in \mathbb{R} \backslash\{0\}$ with $c=\frac{g\left(y_{0}\right)}{f\left(y_{0}\right)}$. Hence, (2.7) in (2.3) we get

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=c f(x) f(y) \tag{2.8}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, where $c \in \mathbb{R} \backslash\{0\}$. We define $r: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
r(x)=c f(x) \tag{2.9}
\end{equation*}
$$

for all $x \in \mathbb{R}$. From (2.8) and (2.9) we get

$$
\begin{equation*}
r\left(\sqrt[N]{x^{N}+y^{N}}\right)=r(x) r(y) \tag{2.10}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Thus, r satisfies Lemma 2.1, i.e., there exists a solution $h: P \rightarrow \mathbb{R}$ to the functional equation (2.2) such that $r(x)=h\left(x^{N}\right)$ for all $x \in \mathbb{R}$, where $P:=\left\{x^{N} \mid x \in \mathbb{R}\right\}$. Hence, from (2.7), (2.9) we get (2.4). Now, the proof is complete.

3. Stability of partially pexiderized exponential-radical functional equation

In this section, we consider the stability of functional equation

$$
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y)
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$, i.e., we deal with the functional inequality

$$
\left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) g(y)\right| \leq \epsilon
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$.
Theorem 3.1. Let $\epsilon \geq 0$ and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional inequality

$$
\begin{equation*}
\left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)-f(x) g(y)\right| \leq \epsilon \tag{3.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Then either f is a bounded function and

$$
\begin{align*}
\left|g\left(\sqrt[N]{x^{N}+y^{N}}\right)-g(x) g(y)\right| & \leq \lambda \epsilon, \tag{3.2}\\
|f(x)-f(0) g(x)| & \leq \epsilon \tag{3.3}
\end{align*}
$$

for all $x, y \in \mathbb{R}$, where

$$
\lambda=\frac{2+M_{g}}{M_{f}}, \quad M_{f}=\sup _{y \in G}|f(y)|, \quad M_{g}=\sup _{y \in G}|g(y)|,
$$

or f, g satisfy the functional equation

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, where $f, g: \mathbb{R} \rightarrow \mathbb{R}$.

Proof. First, we assume that g is bounded. From inequality (3.1) we have

$$
\begin{align*}
&|f(z)|\left|g\left(\sqrt[N]{x^{N}+y^{N}}\right)-g(x) g(y)\right| \tag{3.5}\\
&= \mid f(z) g\left(\sqrt[N]{x^{N}+y^{N}}\right)-f\left(\sqrt[N]{x^{N}+y^{N}+z^{N}}\right)+f\left(\sqrt[N]{x^{N}+y^{N}+z^{N}}\right) \\
&-f\left(\sqrt[N]{z^{N}+x^{N}}\right) g(y)+f\left(\sqrt[N]{z^{N}+x^{N}}\right) g(y)-f(z) g(x) g(y) \mid \\
& \leq\left|f(z) g\left(\sqrt[N]{x^{N}+y^{N}}\right)-f\left(\sqrt[N]{x^{N}+y^{N}+z^{N}}\right)\right| \\
&+\left|f\left(\sqrt[N]{z^{N}+x^{N}}\right) g(y)-f\left(\sqrt[N]{x^{N}+y^{N}+z^{N}}\right)\right| \\
& \quad+\left|f\left(\sqrt[N]{z^{N}+x^{N}}\right)-f(z) g(x)\right||g(y)| \\
& \leq(2+|g(y)|) \epsilon
\end{align*}
$$

for all $x, y, z \in \mathbb{R}$. It follows from (3.5) that

$$
\begin{equation*}
\left|g\left(\sqrt[N]{x^{N}+y^{N}}\right)-g(x) g(y)\right| \leq\left(\frac{2+M_{g}}{|f(z)|}\right) \epsilon \tag{3.6}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}$. Taking the infimum of the right hand side of (3.6) with respect to z we have

$$
\begin{equation*}
\left|g\left(\sqrt[N]{x^{N}+y^{N}}\right)-g(x) g(y)\right| \leq\left(\frac{2+M_{g}}{M_{f}}\right) \epsilon \tag{3.7}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Thus, we get (3.2). Now, putting $x=0$ in (3.1) we have

$$
\begin{equation*}
|f(y)-f(0) g(y)| \leq \epsilon \tag{3.8}
\end{equation*}
$$

for all $y \in \mathbb{R}$. Thus, we get (3.3). Since g is a bounded, in view of (3.8), f is also bounded. Secondly, we assume that g is unbounded. Choosing a sequence $y_{n} \in \mathbb{R}, n=1,2,3, \ldots$, such that $\left|g\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, putting $y=y_{n}, n=1,2,3, \ldots$, in (3.1), dividing the result by $\left|g\left(y_{n}\right)\right|$ we have

$$
\begin{equation*}
\left|\frac{f\left(\sqrt[N]{x^{N}+y_{n}^{N}}\right)}{g\left(y_{n}\right)}-f(x)\right| \leq \frac{\epsilon}{\left|g\left(y_{n}\right)\right|} \tag{3.9}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Letting $n \rightarrow \infty$ we have

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{f\left(\sqrt[N]{x^{N}+y_{n}^{N}}\right)}{g\left(y_{n}\right)} \tag{3.10}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Multiplying both sides of (3.10) by $g(y)$ and using (3.1) and (3.10) we have

$$
\begin{equation*}
g(y) f(x)=\lim _{n \rightarrow \infty} \frac{g(y) f\left(\sqrt[N]{x^{N}+y_{n}^{N}}\right)}{g\left(y_{n}\right)} \tag{3.11}
\end{equation*}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{f\left(\sqrt[N]{x^{N}+y^{N}+y_{n}^{N}}\right)+R\left(x, y, y_{n}\right)}{g\left(y_{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{f\left(\sqrt[N]{\left(\sqrt[N]{x^{N}+y^{N}}\right)^{N}+y_{n}^{N}}\right)}{g\left(y_{n}\right)}+\lim _{n \rightarrow \infty} \frac{R\left(x, y, y_{n}\right)}{g\left(y_{n}\right)} \\
& =f\left(\sqrt[N]{x^{N}+y^{N}}\right)+\lim _{n \rightarrow \infty} \frac{R\left(x, y, y_{n}\right)}{g\left(y_{n}\right)}
\end{aligned}
$$

for all $x, y \in \mathbb{R}$, where $R\left(x, y, y_{n}\right)=g(y) f\left(\sqrt[N]{x^{N}+y_{n}^{N}}\right)-f\left(\sqrt[N]{x^{N}+y^{N}+y_{n}^{N}}\right)$. Using (3.1) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|R\left(x, y, y_{n}\right)\right|}{g\left(y_{n}\right)} \leq \lim _{n \rightarrow \infty} \frac{\epsilon}{g\left(y_{n}\right)}=0 \tag{3.12}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Thus, it follows from (3.10)~(3.12) that

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) g(y) \tag{3.13}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Now, the proof is complete.
In particular, if $g=f$ in (3.1), we have the following.
Corollary 3.2. Let $\epsilon \geq 0$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional inequality

$$
\begin{equation*}
\left|f(x) f(y)-f\left(\sqrt[N]{x^{N}+y^{N}}\right)\right| \leq \epsilon \tag{3.14}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Then either f is a bounded function satisfying

$$
\begin{equation*}
|f(x)| \leq \frac{1}{2}(1+\sqrt{1+4 \epsilon}) \tag{3.15}
\end{equation*}
$$

for all $x \in \mathbb{R}$, or f satisfies the functional equation

$$
\begin{equation*}
f\left(\sqrt[N]{x^{N}+y^{N}}\right)=f(x) f(y) \tag{3.16}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$.
Proof. First, we assume that f is bounded. Using the triangle inequality with (3.14) and letting $M:=\sup _{x \in \mathbb{R}}|f(x)|$ we have

$$
\begin{equation*}
|f(x) f(y)| \leq\left|f\left(\sqrt[N]{x^{N}+y^{N}}\right)\right|+\epsilon \leq M+\epsilon \tag{3.17}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Taking the supremum of the left hand side of (3.17) with respect to y we have

$$
|f(x)| M \leq M+\epsilon
$$

for all $x \in \mathbb{R}$, which implies

$$
\begin{equation*}
M(|f(x)|-1) \leq \epsilon \tag{3.18}
\end{equation*}
$$

for all $x \in \mathbb{R}$. The inequality (3.18) holds for all $x \in \mathbb{R}$ such that $|f(x)| \leq 1$. If $|f(x)|>1$, then we have

$$
\begin{equation*}
|f(x)|(|f(x)|-1) \leq \epsilon \tag{3.19}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Fixing x and solving the quadratic inequality (3.19) we get (3.15). Now, the remaining part of the proof is the similar as that of Theorem 3.1 (see (3.9)~(3.13)) we get (3.16). This completes the proof.

References

[1] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. https://doi.org/10.2307/2043730
[2] J. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74 (1979), no. 2, 242-246. https://doi.org/10.2307/2043141
[3] J. Brzdȩk, Remarks on solutions to the functional equations of the radical type, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 125-135.
[4] C.-K. Choi, Stability of an exponential-monomial functional equation, Bull. Aust. Math. Soc. 97 (2018), no. 3, 471-479. https://doi.org/10.1017/S0004972718000011
[5] J. Chung, C.-K. Choi, and B. Lee, On bounded solutions of Pexider-exponential functional inequality, Honam Math. J. 35 (2013), no. 2, 129-136. https://doi.org/10.5831/HMJ. 2013.35.2.129
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
[7] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998. https://doi.org/10.1007/978-1-4612-1790-9
[8] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1982), no. 1, 95-96. https://doi.org/10.2307/2043816
[9] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.

Chang-Kwon Choi
Department of Mathematics and Hwangryong Talent Education Institute
Kunsan National University
Gunsan 54150, Korea
Email address: ck38@kunsan.ac.kr

