Bull. Korean Math. Soc. 58 (2021), No. 2, pp. 269-275

https://doi.org/10.4134/BKMS.b190017 pISSN: 1015-8634 / eISSN: 2234-3016

STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

CHANG-KWON CHOI

ABSTRACT. Let $\mathbb R$ be the set of real numbers, $f,g:\mathbb R\to\mathbb R$ and $\epsilon\geq 0$. In this paper, we consider the stability of partially pexiderized exponential-radical functional equation

$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x, y \in \mathbb{R}$, i.e., we investigate the functional inequality

$$\left| f\left(\sqrt[N]{x^N + y^N} \right) - f(x)g(y) \right| \le \epsilon$$

for all $x, y \in \mathbb{R}$.

1. Introduction

Throughout this paper, we denote by \mathbb{R} , X, and Y the set of real numbers, a real normed space, and a real Banach space, respectively, and $\epsilon \geq 0$ will be fixed constants. A mapping $f: X \to Y$ is called a monomial of degree N if it satisfies the functional equation

$$\Delta_y^N f(x) - N! f(y) = 0$$

for all $x,y\in X$, where the difference operator Δ_y is defined by $\Delta_y f(x)=f(x+y)-f(x)$ for all $x,y\in X$ and Δ_y^N $(N=2,3,4,\ldots)$ are defined by the iteration $\Delta_y^{N+1}f=\Delta_y\left(\Delta_y^Nf\right)$ for all $N=1,2,3,\ldots$ Using iterations we can see that

$$\Delta_y^N f(x) = \sum_{k=0}^{N} {N \choose k} (-1)^k f(x + (N-k)y)$$

for all $x, y \in X$. A mapping $f: X \to Y$ is said to be *exponential* if f satisfies the functional equation

$$f(x+y) - f(x)f(y) = 0$$

Received January 5, 2019; Revised November 5, 2020; Accepted December 30, 2020. 2010 Mathematics Subject Classification. 39B82.

Key words and phrases. Exponential functional equation, monomial functional equation, pexiderized functional equation, radical functional equation, stability.

270 C.-K. CHOI

for all $x, y \in X$. A mapping $f: X \to Y$ is said to be radical if f satisfies the functional equation

$$f\left(\sqrt[N]{x^N+y^N}\right) = f(x)f(y)$$

for all $x, y \in X$.

The Ulam problem for functional equations goes back to 1940 when S. M. Ulam proposed the following [9]:

Let f be a mapping from a group G_1 to a metric group G_2 with metric $d(\cdot,\cdot)$ such that

$$d(f(xy), f(x)f(y)) \le \epsilon.$$

Then does there exist a group homomorphism h and $\theta_{\epsilon} > 0$ such that

$$d(f(x), h(x)) \le \theta_{\epsilon}$$

for all $x \in G_1$?

This problem was solved affirmatively by D. H. Hyers under the assumption that G_2 is a Banach space (see Hyers [6], Hyers-Isac-Rassias [7]).

As a result of the Ulam problem for exponential functional equation, it is proved that if $f: \mathbb{R} \to \mathbb{R}$ satisfies

$$|f(x+y) - f(x)f(y)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, then f is either a bounded function satisfying

$$|f(x)| \le \frac{1}{2} \left(1 + \sqrt{1 + 4\epsilon} \right)$$

for all $x \in \mathbb{R}$, or an unbounded function satisfying

$$f(x+y) = f(x)f(y)$$

for all $x,y\in\mathbb{R}$ (see Baker [1] or Baker-Lawrence-Zorzitto [2]). Due to Székelyhidi [8], the above result was generalized to the case when the difference f(x+y)-f(x)f(y) is bounded for each fixed y (or equivalently, for each fixed x). In particular, Chung, Choi and Lee [5] investigated the functional inequality

$$|f(x+y) - f(x)g(y)| \le \epsilon$$

for all $x, y \in G$, where $f, g : G \to \mathbb{R}$ and G be a commutative group which is 2-divisible. Also, Choi in [4] showed that stability of functional equation

(1.1)
$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)f(y)$$

for all $x, y \in \mathbb{R}$, where $f : \mathbb{R} \to \mathbb{R}$, i.e., we consider the functional inequalities

$$\left| f\left(\sqrt[N]{x^N + y^N} \right) - f(x)f(y) \right| \le \phi(x),$$

$$\left| f\left(\sqrt[N]{x^N + y^N} \right) - f(x)f(y) \right| \le \psi(x, y)$$

for all $x, y \in \mathbb{R}$, where $\phi : \mathbb{R} \to \mathbb{R}^+$ is an arbitrary function and $\psi : \mathbb{R}^2 \to \mathbb{R}^+$ satisfies a certain condition.

In this paper, we investigate the stability of partially pexiderized exponential-radical functional equation

$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x,y\in\mathbb{R},$ where $f,g:\mathbb{R}\to\mathbb{R},$ i.e., we investigate the functional inequality

$$\left| f\left(\sqrt[N]{x^N + y^N} \right) - f(x)g(y) \right| \le \epsilon$$

for all $x, y \in \mathbb{R}$, where $f, g : \mathbb{R} \to \mathbb{R}$.

2. Solutions of partially pexiderized exponential-radical functional equation

In this section, we consider the solutions of the functional equation

$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x, y \in \mathbb{R}$, where $f, g : \mathbb{R} \to \mathbb{R}$. We exclude the trivial case when f(x) = 0 or g(x) = 0 for all $x \in \mathbb{R}$. We need the following lemma.

Lemma 2.1 ([3, Corollary 2.2]). A function $f : \mathbb{R} \to \mathbb{R}$ satisfies functional equation

(2.1)
$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)f(y)$$

if and only if there exists a solution $h: P \to \mathbb{R}$ to the functional equation

$$(2.2) h(x+y) = h(x)h(y)$$

such that $f(x) = h(x^N)$ for all $x \in \mathbb{R}$, where $P := \{x^N \mid x \in \mathbb{R}\}$.

Theorem 2.2. A function $f: \mathbb{R} \to \mathbb{R}$ satisfies functional equation

$$(2.3) f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

if and only if there exists a solution $h: P \to \mathbb{R}$ to the functional equation (2.2) such that

(2.4)
$$\begin{cases} f(x) = \alpha h(x^N), \\ g(x) = h(x^N) \end{cases}$$

for all $x \in \mathbb{R}$, where $P := \{x^N \mid x \in \mathbb{R}\}$ and $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. Replacing x by y and y by x in (2.3) we have

$$(2.5) f\left(\sqrt[N]{x^N + y^N}\right) = f(y)g(x)$$

for all $x, y \in \mathbb{R}$. Subtracting (2.5) from (2.3) we have

$$(2.6) g(x)f(y) = f(x)g(y)$$

for all $x, y \in \mathbb{R}$. We fix $y = y_0$ with $f(y_0) \neq 0$ and obtain

$$(2.7) g(x) = cf(x)$$

272 C.-K. CHOI

for all $x \in \mathbb{R}$, where $c \in \mathbb{R} \setminus \{0\}$ with $c = \frac{g(y_0)}{f(y_0)}$. Hence, (2.7) in (2.3) we get

(2.8)
$$f\left(\sqrt[N]{x^N + y^N}\right) = cf(x)f(y)$$

for all $x, y \in \mathbb{R}$, where $c \in \mathbb{R} \setminus \{0\}$. We define $r : \mathbb{R} \to \mathbb{R}$ given by

$$(2.9) r(x) = cf(x)$$

for all $x \in \mathbb{R}$. From (2.8) and (2.9) we get

(2.10)
$$r\left(\sqrt[N]{x^N + y^N}\right) = r(x)r(y)$$

for all $x, y \in \mathbb{R}$. Thus, r satisfies Lemma 2.1, i.e., there exists a solution $h: P \to \mathbb{R}$ to the functional equation (2.2) such that $r(x) = h(x^N)$ for all $x \in \mathbb{R}$, where $P := \{x^N \mid x \in \mathbb{R}\}$. Hence, from (2.7), (2.9) we get (2.4). Now, the proof is complete.

3. Stability of partially pexiderized exponential-radical functional equation

In this section, we consider the stability of functional equation

$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x,y\in\mathbb{R}$, where $f,g:\mathbb{R}\to\mathbb{R}$, i.e., we deal with the functional inequality

$$\left| f\left(\sqrt[N]{x^N + y^N} \right) - f(x)g(y) \right| \le \epsilon$$

for all $x, y \in \mathbb{R}$, where $f, g : \mathbb{R} \to \mathbb{R}$.

Theorem 3.1. Let $\epsilon \geq 0$ and $f, g : \mathbb{R} \to \mathbb{R}$ satisfy the functional inequality

(3.1)
$$\left| f\left(\sqrt[N]{x^N + y^N}\right) - f(x)g(y) \right| \le \epsilon$$

for all $x, y \in \mathbb{R}$. Then either f is a bounded function and

(3.2)
$$\left| g\left(\sqrt[N]{x^N + y^N} \right) - g(x)g(y) \right| \le \lambda \epsilon,$$

$$(3.3) |f(x) - f(0)g(x)| \le \epsilon$$

for all $x, y \in \mathbb{R}$, where

$$\lambda = \frac{2 + M_g}{M_f}, \quad M_f = \sup_{y \in G} |f(y)|, \quad M_g = \sup_{y \in G} |g(y)|,$$

 $or \ f,g \ satisfy \ the \ functional \ equation$

(3.4)
$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x, y \in \mathbb{R}$, where $f, g : \mathbb{R} \to \mathbb{R}$.

Proof. First, we assume that g is bounded. From inequality (3.1) we have

$$(3.5) \quad |f(z)| \left| g\left(\sqrt[N]{x^N + y^N}\right) - g(x)g(y) \right|$$

$$= \left| f(z)g\left(\sqrt[N]{x^N + y^N}\right) - f\left(\sqrt[N]{x^N + y^N + z^N}\right) + f\left(\sqrt[N]{x^N + y^N + z^N}\right) - f\left(\sqrt[N]{z^N + x^N}\right)g(y) + f\left(\sqrt[N]{z^N + x^N}\right)g(y) - f(z)g(x)g(y) \right|$$

$$\leq \left| f(z)g\left(\sqrt[N]{x^N + y^N}\right) - f\left(\sqrt[N]{x^N + y^N + z^N}\right) \right|$$

$$+ \left| f\left(\sqrt[N]{z^N + x^N}\right)g(y) - f\left(\sqrt[N]{x^N + y^N + z^N}\right) \right|$$

$$+ \left| f\left(\sqrt[N]{z^N + x^N}\right) - f(z)g(x) \right| |g(y)|$$

$$\leq (2 + |g(y)|)\epsilon$$

for all $x, y, z \in \mathbb{R}$. It follows from (3.5) that

$$\left| g\left(\sqrt[N]{x^N + y^N} \right) - g(x)g(y) \right| \le \left(\frac{2 + M_g}{|f(z)|} \right) \epsilon$$

for all $x, y, z \in \mathbb{R}$. Taking the infimum of the right hand side of (3.6) with respect to z we have

$$\left| g \left(\sqrt[N]{x^N + y^N} \right) - g(x)g(y) \right| \le \left(\frac{2 + M_g}{M_f} \right) \epsilon$$

for all $x, y \in \mathbb{R}$. Thus, we get (3.2). Now, putting x = 0 in (3.1) we have

$$(3.8) |f(y) - f(0)g(y)| \le \epsilon$$

for all $y \in \mathbb{R}$. Thus, we get (3.3). Since g is a bounded, in view of (3.8), f is also bounded. Secondly, we assume that g is unbounded. Choosing a sequence $y_n \in \mathbb{R}$, $n = 1, 2, 3, \ldots$, such that $|g(y_n)| \to \infty$ as $n \to \infty$, putting $y = y_n$, $n = 1, 2, 3, \ldots$, in (3.1), dividing the result by $|g(y_n)|$ we have

(3.9)
$$\left| \frac{f\left(\sqrt[N]{x^N + y_n^N}\right)}{g(y_n)} - f(x) \right| \le \frac{\epsilon}{|g(y_n)|}$$

for all $x \in \mathbb{R}$. Letting $n \to \infty$ we have

(3.10)
$$f(x) = \lim_{n \to \infty} \frac{f\left(\sqrt[N]{x^N + y_n^N}\right)}{g(y_n)}$$

for all $x \in \mathbb{R}$. Multiplying both sides of (3.10) by g(y) and using (3.1) and (3.10) we have

(3.11)
$$g(y)f(x) = \lim_{n \to \infty} \frac{g(y)f\left(\sqrt[N]{x^N + y_n^N}\right)}{g(y_n)}$$

274 C.-K. CHOI

$$\begin{split} &= \lim_{n \to \infty} \frac{f\left(\sqrt[N]{x^N + y^N + y_n^N}\right) + R(x, y, y_n)}{g(y_n)} \\ &= \lim_{n \to \infty} \frac{f\left(\sqrt[N]{\left(\sqrt[N]{x^N + y^N}\right)^N + y_n^N}\right)}{g(y_n)} + \lim_{n \to \infty} \frac{R(x, y, y_n)}{g(y_n)} \\ &= f\left(\sqrt[N]{x^N + y^N}\right) + \lim_{n \to \infty} \frac{R(x, y, y_n)}{g(y_n)} \end{split}$$

for all $x, y \in \mathbb{R}$, where $R(x, y, y_n) = g(y) f\left(\sqrt[N]{x^N + y_n^N}\right) - f\left(\sqrt[N]{x^N + y^N + y_n^N}\right)$. Using (3.1) we have

(3.12)
$$\lim_{n \to \infty} \frac{|R(x, y, y_n)|}{g(y_n)} \le \lim_{n \to \infty} \frac{\epsilon}{g(y_n)} = 0$$

for all $x, y \in \mathbb{R}$. Thus, it follows from $(3.10) \sim (3.12)$ that

(3.13)
$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)g(y)$$

for all $x, y \in \mathbb{R}$. Now, the proof is complete.

In particular, if g = f in (3.1), we have the following.

Corollary 3.2. Let $\epsilon \geq 0$ and $f: \mathbb{R} \to \mathbb{R}$ satisfy the functional inequality

(3.14)
$$\left| f(x)f(y) - f\left(\sqrt[N]{x^N + y^N}\right) \right| \le \epsilon$$

for all $x, y \in \mathbb{R}$. Then either f is a bounded function satisfying

(3.15)
$$|f(x)| \le \frac{1}{2} \left(1 + \sqrt{1 + 4\epsilon} \right)$$

for all $x \in \mathbb{R}$, or f satisfies the functional equation

(3.16)
$$f\left(\sqrt[N]{x^N + y^N}\right) = f(x)f(y)$$

for all $x, y \in \mathbb{R}$, where $f : \mathbb{R} \to \mathbb{R}$.

Proof. First, we assume that f is bounded. Using the triangle inequality with (3.14) and letting $M:=\sup_{x\in\mathbb{R}}|f(x)|$ we have

$$(3.17) |f(x)f(y)| \le \left| f\left(\sqrt[N]{x^N + y^N}\right) \right| + \epsilon \le M + \epsilon$$

for all $x,y\in\mathbb{R}.$ Taking the supremum of the left hand side of (3.17) with respect to y we have

$$|f(x)|M \le M + \epsilon$$

for all $x \in \mathbb{R}$, which implies

$$(3.18) M(|f(x)| - 1) \le \epsilon$$

for all $x \in \mathbb{R}$. The inequality (3.18) holds for all $x \in \mathbb{R}$ such that $|f(x)| \le 1$. If |f(x)| > 1, then we have

$$(3.19) |f(x)| (|f(x)| - 1) \le \epsilon$$

for all $x \in \mathbb{R}$. Fixing x and solving the quadratic inequality (3.19) we get (3.15). Now, the remaining part of the proof is the similar as that of Theorem 3.1 (see (3.9) \sim (3.13)) we get (3.16). This completes the proof.

References

- [1] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. https://doi.org/10.2307/2043730
- [2] J. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. **74** (1979), no. 2, 242–246. https://doi.org/10.2307/2043141
- [3] J. Brzdęk, Remarks on solutions to the functional equations of the radical type, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 125–135.
- [4] C.-K. Choi, Stability of an exponential-monomial functional equation, Bull. Aust. Math. Soc. 97 (2018), no. 3, 471–479. https://doi.org/10.1017/S0004972718000011
- [5] J. Chung, C.-K. Choi, and B. Lee, On bounded solutions of Pexider-exponential functional inequality, Honam Math. J. 35 (2013), no. 2, 129–136. https://doi.org/10.5831/HMJ. 2013.35.2.129
- [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- [7] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998. https://doi.org/10.1007/978-1-4612-1790-9
- [8] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1982), no. 1, 95–96. https://doi.org/10.2307/2043816
- [9] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.

CHANG-KWON CHOI

DEPARTMENT OF MATHEMATICS AND HWANGRYONG TALENT EDUCATION INSTITUTE

Kunsan National University

Gunsan 54150, Korea

Email address: ck38@kunsan.ac.kr