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A VARIANT OF THE QUADRATIC FUNCTIONAL

EQUATION ON GROUPS AND AN APPLICATION

Heather Hunt Elfen, Thomas Riedel, and Prasanna K. Sahoo

Abstract. Let G be a group and C the field of complex numbers. Sup-

pose σ : G→ G is an endomorphism satisfying σ(σ(x)) = x for all x in G.
In this paper, we first determine the central solution, f : G or G×G→ C,

of the functional equation

f(xy) + f(σ(y)x) = 2f(x) + 2f(y) for all x, y ∈ G,
which is a variant of the quadratic functional equation. Using the central

solution of this functional equation, we determine the general solution of

the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s) for all
p, q, r, s ∈ G, which is a variant of the equation f(pr, qs) + f(ps, qr) =

2f(p, q) + 2f(r, s) studied by Chung, Kannappan, Ng and Sahoo in [3]

(see also [16]). Finally, we determine the solutions of this equation on the
free groups generated by one element, the cyclic groups of order m, the

symmetric groups of order m, and the dihedral groups of order 2m for
m ≥ 2.

1. Introduction

The functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y)

for all x, y ∈ G, where G is a group written multiplicatively and y−1 is the
inverse of y, is known as the quadratic functional equation. It serves in certain
abstract spaces for the definition of the norm. It was studied by many au-
thors including Jensen [5, 6], Jordan and von Neumann [7], Kurepa [11], Aczél
and Vincze [2], Aczél [1], Kannappan [8–10], and Yang [19]. Sinopoulos [17]
considered the following generalization of the quadratic functional equation

(1.1) f(xy) + f(xσ(y)) = 2f(x) + 2f(y)

for all x, y ∈ S, where S is a commutative semigroup and σ : S → S is an
endomorphism of S such that σ(σ(x)) = x for all x ∈ S. In this paper, we
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consider a variant of this functional equation, namely

(1.2) f(xy) + f(σ(y)x) = 2f(x) + 2f(y)

for all x, y ∈ G, where G is a group (not necessarily abelian). If G is an abelian
group or f is a central function on a group G, then the equations (1.1) and
(1.2) are equivalent.

This paper is organized as follows: In Section 2, we introduce the definition
of relevant terminologies and notations that will be used in the subsequent
sections of the paper. In Section 3, we prove some preliminary results that will
be used to determine the solution of the equation (1.2) on groups. Section 4
contains the solution of (1.2) on groups when f is a central function. In Section
5, we solve the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s)
on groups as an application of a result related to equation (1.2). Section 6
contains the solution of the functional equation (1.2) on certain groups, such
as, the free groups generated by one element, the cyclic groups of order m, the
symmetric groups of order m, and the dihedral groups of order 2m for m ≥ 2.

2. Notation and terminology

Let G be a group and let S be a semigroup written multiplicatively with
the identity element e. Let C be the field of complex numbers. A function
f : S → C is said to be central if and only if f(xy) = f(yx) for all x, y ∈
S. Similarly, a function f : S × S → C is said to be central if and only if
f(xy, uv) = f(yx, vu) for all x, y, u, v ∈ S. A function A : S → C is said to
be a homomorphism if A(xy) = A(x) + A(y) for all x, y ∈ S. It is known
that A(e) = 0. Similarly, A : S × S → C is said to be a homomorphism if
A(xy, uv) = A(x, u)+A(y, v) for all x, y, u, v ∈ S. It is known that A(e, e) = 0.
A function B : S × S → C is said to be a bi-homomorphism if and only if
B is a homomorphism in each variable, that is B(xy, z) = B(x, z) + B(y, z)
and B(x, yz) = B(x, y) + B(x, z) for all x, y, z ∈ S or equivalently B satisfies
B(xy, uv) = B(x, u) + B(x, v) + B(y, u) + B(y, v) for x, y, u, v ∈ S. The map
B : S × S → C is said to be symmetric if and only if B(x, u) = B(u, x) for
all x, u ∈ S. It can be easily seen that B(e, x) = B(x, e) = B(e, e) = 0 for
all x ∈ S and B(x−1, u) = −B(x, u) for x, u ∈ S. The map σ : S → S is an
endomorphism satisfying σ(σ(x)) = x for all x ∈ S.

Let f : S → C be a function. The Cauchy difference Cf : S × S → C of
a function f is defined by Cf (x, y) := f(xy) − f(x) − f(y) for all x, y ∈ S.
The Cauchy difference Cf (x, y) measures how much f deviates from being a
homomorphism of the semigroup S into the additive group (C,+). The second

Cauchy difference of f , C
(2)
f : S × S × S → C, is defined by C

(2)
f (x, y, z) :=

Cf (xy, z)− Cf (x, z)− Cf (y, z) for all x, y, z ∈ S.



A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION 2167

3. Some preliminary results

Lemma 3.1. Let C be the field of complex numbers. Let S be a semigroup
and σ : S → S be an endomorphism satisfying σ(σ(x)) = x for all x ∈ S. Let
f : S → C be a function satisfying the functional equation (1.2), that is

f(xy) + f(σ(y)x) = 2 f(x) + 2 f(y)

for all x, y ∈ S. Then f : S → C also satisfies the functional equation

(3.1) f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)

for all x, y, z ∈ S.

Proof. Let f be a solution of (1.2). Then, letting x = xy and y = z in (1.2) we
get that

(3.2) f(xyz) + f(σ(z)xy) = 2 f(xy) + 2 f(z)

for all x, y, z ∈ S. Similarly, letting x = σ(z)x in (1.2) and using the fact that
σ is an endomorphism, the resulting equation yields

(3.3) f(σ(z)xy) + f(σ(yz)x) = 2 f(σ(z)x) + 2 f(y)

for all x, y, z ∈ S. Letting y = yz in (1.2) and rewriting we get that

(3.4) f(σ(yz)x) = 2 f(x) + 2 f(yz)− f(xyz)

for all x, y, z ∈ S. Letting y = z in (1.2), rewriting, and multiplying by 2 yields

(3.5) 2 f(σ(z)x) = 4 f(x) + 4 f(z)− 2f(xz)

for all x, y, z ∈ S. Substituting (3.4) and (3.5) into (3.3) and then rewriting
the resulting expression we get

f(σ(z)xy)− f(xyz) = 2 f(x) + 2 f(y) + 4 f(z)− 2 f(xz)− 2 f(yz)(3.6)

for all x, y, z ∈ S. Subtracting the previous equation (3.6) from (3.2) and
dividing by 2 we get the asserted equation:

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)

for all x, y, z ∈ S. This completes the proof. �

Remark 3.2. The functional equation (3.1) is in fact the kernel of the second

Cauchy difference of f , that is C
(2)
f (x, y, z) = 0. This equation first appeared in

a paper by J. H. C. Whitehead in 1950 [20]. He solved the functional equation
(3.1) on abelian groups assuming that f is an even function. The equation
has been referred to by Faiziev and Sahoo in [4] as Whitehead’s functional
equation. If f is a central function, then Whitehead’s equation takes the form

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y).

This equation is often referred to as Fréchet’s functional equation. Kannappan,
in [10], and Stetkær, in [18], deal with these equations in various settings.

The next lemma follows from Kannappan’s work (see [8], [9], and [10]).
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Lemma 3.3. Let G be a group, C be the field of complex numbers and f : G→
C satisfy the functional equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y)

for all x, y, z ∈ G. Then f satisfies

8 f(x) = 4 a(x) + b(x, x)

for all x ∈ G, where a : G → C is a homomorphism and b : G × G → C is a
symmetric bi-homomorphism.

Remark 3.4. An examination of Kannappan’s proof reveals that

(i) a(x) := f(x)− f(x−1) and
(ii) b(x, y) := q(xy)− q(xy−1), where q(x) := f(x) + f(x−1)

for all x ∈ G. That is, a(x) and q(x) are the odd and even parts of the solution
f of Fréchet’s functional equation respectively.

4. The central solution of the equation (1.2)

In this section, we determine the central solution of the functional equation
(1.2).

Theorem 4.1. Let G be a group and σ : G→ G be an endomorphism satisfying
σ(σ(x)) = x for all x ∈ G. Let f : G → C be a central function satisfying the
functional equation (1.2) for all x, y ∈ G. Then

(4.1) f(x) = A(x) +B(x, x),

where A : G → C is a homomorphism satisfying A(σ(x)) = A(x) for all
x ∈ G and B : G × G → C is a symmetric bi-homomorphism satisfying
B(σ(x), y) = −B(x, y) for all x, y ∈ G. The converse is also true.

Proof. Let f be a solution of (1.2). From Lemma 3.1 we have that f satisfies
the functional equation

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)

for all x, y, z ∈ G. Using the fact that f is central the previous equation yields

f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(zx)− f(y)

for all x, y, z ∈ G. From Lemma 3.3 we have that

8 f(x) = 4 a(x) + b(x, x)

for all x ∈ G, and hence

(4.2) f(x) = A(x) +B(x, x),

where A : G → C is a homomorphism and B : G × G → C is a symmetric
bi-homomorphism.
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One can see that if x = y = e in (1.2), where e is the identity element in
G, we get that f(e) = 0. Now, letting x = e in (1.2) and using the fact that
f(e) = 0 we have that

(4.3) f(σ(y)) = f(y)

for all y in G. Therefore, by item (i) of Remark 3.4 we have that

(4.4) A(σ(x)) = f(σ(x))− f(σ(x)−1) = f(x)− f(x−1) = A(x)

for all x ∈ G, thus A is a σ-even function. By (4.2) and (4.3) we see that

A(σ(x)) +B(σ(x), σ(x)) = A(x) +B(x, x)

for all x ∈ G, thus (4.4) yields

(4.5) B(σ(x), σ(x)) = B(x, x)

for all x ∈ G. Therefore, using (4.5), the fact that σ is an endomorphism, and
the fact that B is a symmetric bi-homomorphism we have the following:

B(xy, xy)

= B(σ(xy), σ(xy))

= B(σ(x)σ(y), σ(x)σ(y))

= B(σ(x), σ(x)) +B(σ(x), σ(y)) +B(σ(y), σ(x)) +B(σ(y), σ(y))

= B(σ(x), σ(x)) + 2B(σ(x), σ(y)) +B(σ(y), σ(y))

= B(x, x) + 2B(σ(x), σ(y)) +B(y, y)

for all x, y ∈ G. Since B is a symmetric bi-homomorphism

B(xy, xy) = B(x, x) + 2B(x, y) +B(y, y)

for all x, y ∈ G, thus
B(σ(x), σ(y)) = B(x, y)

for all x, y ∈ G.
Now, using (4.2) in (1.2) we have that

A(xy) +B(xy, xy) +A(σ(y)x) +B(σ(y)x, σ(y)x)

= 2A(x) + 2B(x, x) + 2A(y) + 2B(y, y)

for all x, y ∈ G. Using the fact that A is a homomorphism and σ-even, that is
A satisfies (4.4), we obtain

A(x) +A(y) +B(xy, xy) +A(σ(y)) +A(x) +B(σ(y)x, σ(y)x)

= 2A(x) + 2B(x, x) + 2A(y) + 2B(y, y),

which simplifies to

B(xy, xy) +B(σ(y)x, σ(y)x) = 2B(x, x) + 2B(y, y)

for all x, y ∈ G. Now, using the fact that B is a symmetric bi-homomorphism
the last equality gives us

B(x, x) + 2B(x, y) +B(y, y) +B(σ(y), σ(y)) + 2B(σ(y), x) +B(x, x)
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= 2B(x, x) + 2B(y, y)

for all x, y ∈ G. Simplifying and using (4.5) and the fact that B is symmetric
we get

B(σ(x), y) = −B(x, y)

for all x, y ∈ G.
It is easy to check that any function of the form (4.2) having the properties

that A(σ(x)) = A(x) and B(σ(x), y) = −B(x, y) for all x, y ∈ G is a solution
of (1.2). This completes the proof. �

5. An application of the central solution of the equation (1.2)

The goal of this section is to determine the general solution f : G×G→ C
of the following functional equation

(5.1) f(pr, qs) + f(sp, rq) = 2 f(p, q) + 2 f(r, s)

for all p, q, r, s ∈ G. This equation is a variant of the functional equation
f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s) studied in [3] for all p, q, r, s in the
open unit interval (0, 1) and equivalent to the above equation when G is an
abelian group.

For the sake of convenience, throughout this section we will denote G×G by
G and S × S by S; then G (or S) is a group (or semigroup) under component-
wise multiplication. That is,

(p, q)(r, s) = (pr, qs)

for all p, q, r, s ∈ G (or S). Define a function σ : G → G (or σ : S → S) such
that σ(p, q) = (q, p) for all p, q ∈ G (or S). Then it is easy to see that σ is an
endomorphism. To see this, consider σ(pr, qs). Using the definition of σ, we
have

σ(pr, qs) = (qs, pr) = (q, p) (s, r) = σ(p, q)σ(r, s).

Further, σ satisfies the property

σ(σ(p, q)) = σ(q, p) = (p, q)

for all x = (p, q) ∈ G (or S), that is σ(σ(x)) = x for all x ∈ G (or S).
One can see that if we let x = (p, q) and y = (r, s) in

f(pr, qs) + f(sp, rq) = 2 f(p, q) + 2 f(r, s),

it reduces to

f(xy) + f(σ(y)x) = 2 f(x) + 2 f(y)

for all x, y ∈ G (or S). Therefore, Theorem 4.1 can be used to determine
the solution of the functional equation (5.1) on groups. We begin with a few
preliminary results.

Lemma 5.1. Let S be a semigroup and f : S → C be a solution to the func-
tional equation (5.1) for all p, q, r, s ∈ S. Then f is a central function.
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Proof. Let f be a solution to (5.1). Then

f(pr, qs) + f(sp, rq) = 2 f(p, q) + 2 f(r, s)

holds for all p, q, r, s ∈ S. Letting p = q = r = s = e, where e is the identity
element in S, we get f(e, e) = 0. Setting p = q = e gives us

f(s, r) = f(r, s)

for all r, s ∈ S. Therefore, f is symmetric.
Now, setting q = s = e we get

f(pr, e) + f(p, r) = 2 f(p, e) + 2 f(r, e)

for all p, r ∈ S. Defining a function g : S → C such that g(p) := f(p, e) for all
p ∈ S the previous becomes

(5.2) f(p, r) = 2 g(p) + 2 g(r)− g(pr)

for all p, r ∈ S. Since f is symmetric, we have the following:

f(p, r) = 2 g(r) + 2 g(p)− g(rp)

for all p, r ∈ S. Subtracting the previous two equations yields

g(pr) = g(rp)

for all p, r ∈ S and hence g is central.
Now, switching r and s in (5.1) and using the fact that f is symmetric we

get
f(qr, ps) + f(sq, rp) = 2 f(p, q) + 2 f(s, r)

for all p, q, r, s ∈ S. Therefore,

f(pr, qs) + f(sp, rq) = f(qr, ps) + f(sq, rp)

for all p, q, r, s ∈ S. Using (5.2) to expand the previous we get

2 g(pr) + 2 g(qs)− g(prqs) + 2 g(sp) + 2 g(rq)− g(sprq)

= 2 g(qr) + 2 g(ps)− g(qrps) + 2 g(sq) + 2 g(rp)− g(sqrp)

for all p, r, q, s ∈ S. Since g is central it simplifies to

g(prqs) = g(qrps)

and thus
g(prqs) = g(rpsq)

for all p, r, q, s ∈ S. Using (5.2) and computing f(pr, qs) and f(rp, sq), we get
the following:

f(pr, qs) = 2 g(pr) + 2 g(qs)− g(prqs)

and

f(rp, sq) = 2 g(rp) + 2 g(sq)− g(rpsq)

for all p, q, r, s ∈ S. Therefore,

f(pr, qs) = f(rp, sq)
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for all p, q, r, s ∈ S and f is central. This completes the proof. �

In the next few lemmas, namely, Lemmas 5.2 and 5.4, using some ideas from
Sahoo in [15] (see also [16], p. 42), we present two results regarding the decom-
position of homomorphisms and bi-homomorphisms on non-unital semigroups.

Lemma 5.2. Let S be a semigroup (not necessarily unital) and A : S → C.
Then A is a homomorphism if and only if

A(p, r) = A1(p) +A2(r)

for all p, r ∈ S, where A1, A2 : S → C are both homomorphisms. Moreover,
A1(p) = A(pa, a) − A(a, a) and A2(q) = A(a, qa) − A(a, a) for a fixed a ∈ S
and all p, q ∈ S.

Proof. Let A : S → C be a homomorphism. Hence

(5.3) A(pr, qs) = A(p, q) +A(r, s)

holds for all p, q, r, s ∈ S. Let a ∈ S be a fixed element. Using associativity
and the fact that A is a homomorphism we have the following for all p, q ∈ S:

A(p, q) = A(a, a) +A(p, q) +A(a, a)− 2A(a, a)

= A(apa, aqa)− 2A(a, a)

= A(apa, aq · a)− 2A(a, a)

= A(a, aq) +A(pa, a)− 2A(a, a)

= A(a, aq) +A(a, a) +A(pa, a)− 3A(a, a)

= A(aa, aqa) +A(pa, a)− 3A(a, a)

= A(a, a) +A(a, qa) +A(pa, a)− 3A(a, a)

= A(pa, a)−A(a, a) +A(a, qa)−A(a, a)

= A1(p) +A2(q),

where

A1(p) := A(pa, a)−A(a, a),

A2(q) := A(a, qa)−A(a, a).

Next, we show that A1 and A2 are homomorphisms from S into C. Observe
that

A1(pq) = A(pqa, a)−A(a, a)

= A(a, a) +A(pqa, a)− 2A(a, a)

= A(apqa, aa)− 2A(a, a)

= A(paqa, aa)− 2A(a, a)

= A(ap, a) +A(qa, a)− 2A(a, a)

= A(ap, a)−A(a, a) +A1(q)
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= A(ap, a) +A(a, a)− 2A(a, a) +A1(q)

= A(apa, aa)− 2A(a, a) +A1(q)

= A(a, a) +A(pa, a)− 2A(a, a) +A1(q)

= A1(p) +A1(q)

for all p, q ∈ S. Hence A1 is a homomorphism. Similarly, it can be shown that
A2 is also a homomorphism from S into C. The converse clearly holds. �

Lemma 5.3. Let S be a non-unital semigroup, B : S × S → C a symmetric
bi-homomorphism, and (a, a) ∈ S a fixed element. Then the following hold:

B((pa, a), (?, ?)) = B((ap, a), (?, ?)),

B((a, pa), (?, ?)) = B((a, ap), (?, ?))

for all p ∈ S.

Proof. Let a∈ S be a fixed element. Using the definition of a bi-homomorphism,
we have

B((pa, a), (?, ?)) = B((a, a), (?, ?)) +B((pa, a), (?, ?))−B((a, a), (?, ?))

= B((apa, aa), (?, ?))−B((a, a), (?, ?))

= B((ap, a), (?, ?)) +B((a, a), (?, ?))−B((a, a), (?, ?))

= B((ap, a), (?, ?))

for all p ∈ S. �

In the next theorem we shall show that a bi-homomorphism on a product
of two semigroups S × S splits into a sum of four bi-homomorphisms on the
factor S.

Lemma 5.4. Let S be a semigroup (not necessarily unital) and the function
B : S × S → C be a symmetric bi-homomorphism. Then there exist symmetric
bi-homomorphisms ψ1, ψ2, ψ3, ψ4 : S → C such that

B((p, q), (r, s)) = ψ1(p, r) + ψ2(p, s) + ψ3(q, r) + ψ4(q, s)

for all p, q, r, s ∈ S.

Proof. Let B : S×S → C be a symmetric bi-homomorphism. By the definition
of a bi-homomorphism, we have

B((p1, q1)(p2, q2), (r1, s1)(r2, s2))

= B((p1, q1), (r1, s1)(r2, s2)) +B((p2, q2), (r1, s1)(r2, s2))

for all p1, p2, q1, q2, r1, r2, s1, s2 ∈ S. For fixed r1, r2, s1, s2 ∈ S, defining B1 :
S → C by

(5.4) B1(p, q) := B((p, q), (r1, s1)(r2, s2))

the previous equation becomes

(5.5) B1((p1, q1)(p2, q2)) = B1(p1, q1) +B1(p2, q2)
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for all p1, p2, q1, q2 ∈ S. Hence, B1 is a homomorphism from S into C. By
Lemma 5.2, B1 can be decomposed as a sum of two homomorphisms on S.

Fixing (a, a) ∈ S, and using (5.4) and (5.5) we get that

B((p, q), (r1, s1)(r2, s2))

= B((pa, a), (r1, s1)(r2, s2))−B((a, a), (r1, s1)(r2, s2))

+B((a, aq), (r1, s1)(r2, s2))−B((a, a), (r1, s1)(r2, s2)).

Since B is a bi-homomorphism, the last equality can be rewritten as

B((p, q), (r1, s1)) +B((p, q), (r2, s2))(5.6)

= B((pa, a), (r1, s1)) +B((pa, a), (r2, s2))

−B((a, a), (r1, s1))−B((a, a), (r2, s2))

+B((a, aq), (r1, s1)) +B((a, aq), (r2, s2))

−B((a, a), (r1, s1))−B((a, a), (r2, s2)).

Rearranging (5.6), we obtain

B((p, q), (r1, s1))−B((pa, a), (r1, s1))

−B((a, aq), (r1, s1)) + 2B((a, a), (r1, s1))

= −
[
B((p, q), (r2, s2))−B((pa, a), (r2, s2))

−B((a, aq), (r2, s2)) + 2B((a, a), (r2, s2))

]
.

For fixed p, q ∈ S, the left side of the above equality is a function of r1 and
s1, whereas the right side of the equality is a function of r2 and s2. Therefore,
each side is equal to some function α(p, q). However, the left side and the right
side differ by a minus sign, thus the function α(p, q) must be zero. Hence

B((p, q), (r, s)) = B((pa, a), (r, s)) +B((a, aq), (r, s))− 2B((a, a), (r, s)).

Since, for fixed p and q in S, each B term on the right side of the above equation
is a homomorphism on S, using Lemma 5.2, we have

B((p, q), (r, s)) = B((pa, a), (r, s)) +B((a, aq), (r, s))− 2B((a, a), (r, s))

= B((pa, a), (ra, s)) +B((pa, a), (a, as))− 2B((pa, a), (a, a))

+B((a, aq), (ra, s)) +B((a, aq), (a, as))− 2B((a, aq), (a, a))

− 2B((a, a), (ra, a))− 2B((a, a), (a, as)) + 4B((a, a), (a, a)).

Therefore, B((p, q), (r, s)) can be decomposed as

(5.7) B((p, q), (r, s)) = ψ1(p, r) + ψ2(p, s) + ψ3(q, r) + ψ4(q, s),

where ψ1, ψ2, ψ3, ψ4 : S → C are given by

ψ1(p, r) = B((pa, a), (ra, a))−B((pa, a), (a, a))(5.8)

−B((a, a), (ra, a)) +B((a, a), (a, a)),
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ψ2(p, s) = B((pa, a), (a, as))−B((pa, a), (a, a))(5.9)

−B((a, a), (a, as)) +B((a, a), (a, a)),

ψ3(q, r) = B((a, aq), (ra, a))−B((a, aq), (a, a))(5.10)

−B((a, a), (ra, a)) +B((a, a), (a, a)),

ψ4(q, s) = B((a, aq), (a, as))−B((a, aq), (a, a))(5.11)

−B((a, a), (a, as)) +B((a, a), (a, a)).

Now, we are left to show that the functions ψ1, ψ2, ψ3, and ψ4 are symmetric
bi-homomorphisms. We will show one. The others are similar and hence are
left for the reader. Considering ψ1(pq, rs) and using Lemma 5.3, we have the
following:

ψ1(pq, rs)

= B((pqa, a), (rsa, a))−B((pqa, a), (a, a))

−B((a, a), (rsa, a)) +B((a, a), (a, a))

= B((apqa, aa), (rsa, a))−B((pqa, a), (a, a))

− 2B((a, a), (rsa, a)) +B((a, a), (a, a))

= B((ap, a), (rsa, a)) +B((qa, a), (rsa, a))−B((pqa, a), (a, a))

− 2B((a, a), (rsa, a)) +B((a, a), (a, a))

= B((pa, a), (rsa, a)) +B((qa, a), (rsa, a)) +B((a, a), (a, a))

+B((pqa, a), (a, a))− 2B((a, a), (rsa, a)) + 2B((a, a), (a, a))

= B((pa, a), (rsa, a)) +B((qa, a), (rsa, a))−B((apqa, aa), (a, a))

− 2B((a, a), (rsa, a)) + 2B((a, a), (a, a))

= B((pa, a), (rsa, a)) +B((qa, a), (rsa, a))−B((ap, a), (a, a))

−B((qa, a), (a, a))− 2B((a, a), (rsa, a)) + 2B((a, a), (a, a))

= B((pa, a), (arsa, aa))−B((pa, a), (a, a)) +B((qa, a), (arsa, aa))

−B((qa, a), (a, a))−B((pa, a), (a, a))−B((qa, a), (a, a))

− 2B((a, a), (arsa, aa)) + 4B((a, a), (a, a))

= B((pa, a), (ar, a)) +B((pa, a), (sa, a)) +B((qa, a), (ar, a))

+B((qa, a), (sa, a))−B((pa, a), (a, a))−B((qa, a), (a, a))

−B((pa, a), (a, a))−B((qa, a), (a, a))− 2B((a, a), (ra, a))

− 2B((a, a), (sa, a)) + 4B((a, a), (a, a))

= B((pa, a), (ra, a))−B((pa, a), (a, a))−B((a, a), (ra, a)) +B((a, a), (a, a))

+B((pa, a), (sa, a))−B((pa, a), (a, a))−B((a, a), (sa, a))+B((a, a), (a, a))

+B((qa, a), (ra, a))−B((qa, a), (a, a))−B((a, a), (ra, a))+B((a, a), (a, a))

+B((qa, a), (sa, a))−B((qa, a), (a, a))−B((a, a), (sa, a))+B((a, a), (a, a))
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= ψ1(p, r) + ψ1(p, s) + ψ1(q, r) + ψ1(q, s)

for all p, q, r, s ∈ S. Hence, ψ1 is a bi-homomorphism on S. We are left to show
that ψ1 is symmetric. Since B is symmetric, we have that

ψ1(p, r)

= B((pa, a), (ra, a))−B((pa, a), (a, a))−B((a, a), (ra, a)) +B((a, a), (a, a))

= B((ra, a), (pa, a))−B((a, a), (pa, a))−B((ra, a), (a, a)) +B((a, a), (a, a))

= ψ1(r, p)

for all p, r ∈ S. This completes the proof. �

In the following theorem, we present the general solution of the functional
equation (5.1) on groups.

Theorem 5.5. Let G be a group and f : G→ C be a solution of the functional
equation (5.1) for all p, q, r, s ∈ G. Then

(5.12) f(p, r) = A(p) +A(r) + ψ(pr−1, pr−1)

for all p, r ∈ G where A : G → C is a homomorphism and ψ : G → C is a
symmetric bi-homomorphism.

Proof. Let f be a solution of the functional equation (5.1). Define a function σ :
G→ G such that σ(p, q) = (q, p) for all p, q ∈ G. Then σ is an endomorphism
satisfying the property that

σ(σ(p, q)) = σ(q, p) = (p, q),

that is, σ(σ(x)) = x for all x ∈ G. Let x = (p, q) and y = (r, s) in (5.1) then it
reduces to (1.2) for all x, y ∈ G. Since f is a solution of (5.1) we have that f
is central from Lemma 5.1. Therefore, we can apply Theorem 4.1, which gives
us

f(x) = A(x) +B(x, x),

where A : G→ C is an additive homomorphism satisfying A(σ(x)) = A(x) for
all x ∈ G and B : G × G → C is a symmetric bi-homomorphism satisfying
B(x, y) = −B(x, σ(y)) for all x, y ∈ G. From Lemma 5.2 and Lemma 5.3 we
know that A and B can both be decomposed and thus

f(p, q) = A(p, q) +B((p, q), (p, q))

becomes

(5.13) f(p, q) = A1(p) +A2(q) + ψ1(p, p) + ψ2(p, q) + ψ3(q, p) + ψ4(q, q),

where A1 and A2 are homomorphisms and ψ1, ψ2, ψ3, and ψ4 are symmetric
bi-homomorphisms.

Since x = (p, q), y = (r, s), and B(σ(x), y) = −B(x, y), we have

B(σ(p, q), (r, s)) = −B((p, q), (r, s)),
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which is

(5.14) B((q, p), (r, s)) = −B((p, q), (r, s))

for all p, q, r, s ∈ G. From the decomposition of B (i.e. using Lemma 5.3) and
(5.14) we have that

ψ1(q, r) + ψ2(q, s) + ψ3(p, r) + ψ4(p, s)(5.15)

= − ψ1(p, r)− ψ2(p, s)− ψ3(q, r)− ψ4(q, s)

for all p, q, r, s ∈ G. Letting p = r = e in (5.15) and using the properties of
a bi-homomorphism we have ψ2(q, s) = −ψ4(q, s) for all q, s ∈ G. That is,
ψ2 = −ψ4. Similarly, substituting p = s = e into equation (5.15) we obtain
ψ1(q, r) = −ψ3(q, r) for all q, r ∈ G, which is ψ1 = −ψ3.

Since B(σ(x), y) = −B(x, y) holds for all x, y ∈ G, if we let x = σ(x) and
y = σ(y), we get

B(x, σ(y)) = −B(σ(x), σ(y)).

Since x = (p, q) and y = (r, s) for p, q, r, s ∈ G, the previous relation yields

B((p, q), (r, s)) = B((q, p), (s, r))

for all p, q, r, s ∈ G. From the decomposition of B (i.e. Lemma 5.3), we obtain

ψ1(q, s) + ψ2(q, r) + ψ3(p, s) + ψ4(p, r)(5.16)

= ψ1(p, r) + ψ2(p, s) + ψ3(q, r) + ψ4(q, s)

for all p, q, r, s ∈ G. If we let p = r = e in (5.16) and use the properties of
the bi-homomorphism we see that ψ1(q, s) = ψ4(q, s) for all q, s ∈ G. That is,
ψ1 = ψ4. Similarly, if we let p = s = e in (5.16) we have ψ2(q, r) = ψ3(q, r) for
all q, r ∈ G. That is, ψ2 = ψ3. Therefore,

(5.17) ψ := ψ1 = ψ4 = −ψ3 = −ψ2,

where ψ : G→ C. Thus, from (5.13) and the properties of symmetric bi-homo-
morphisms we have the following:

f(p, q) = A1(p) +A2(q) + ψ(p, p)− ψ2(p, q)− ψ(q, p) + ψ4(q, q)

= A1(p) +A2(q) + ψ(p, p) + ψ2(p, q−1) + ψ(q
−1, p) + ψ4(q−1, q−1)

= A1(p) +A2(q) + ψ(pq−1, pq−1)

for all p, q ∈ G. Substituting the above into (5.1) gives us the following:

A1(pr) +A2(qs) + ψ(pr(qs)−1, pr(qs)−1)

+A1(sp) +A2(rq) + ψ(sp(rq)−1, sp(rq)−1)

= 2[A1(p) +A2(q) + ψ(pq−1, pq−1)] + 2 [A1(q) +A2(s) + ψ(qs−1, qs−1)]

for all p, q, r, s ∈ G. Simplification yields

A1(pr) +A2(qs) +A1(sp) +A2(rq)(5.18)

= 2[A1(p) +A2(q)] + 2 [A1(r) +A2(s)]



2178 H. ELFEN, T. RIEDEL, AND P. SAHOO

for all p, q, r, s ∈ G. Letting p = q = s = e in (5.18) yields A2(r) = A1(r) for all
r ∈ G. Thus A := A1 = A2, where A : G→ C is a homomorphism. Therefore,

f(p, q) = A(p) +A(q) + ψ(pq−1, pq−1)

for all p, q ∈ G is the solution of the functional equation (5.1). This completes
the proof. �

Remark 5.6. It can be easily shown that the functional equation f(rp, sq) +
f(ps, qr) = 2f(p, q) + 2f(r, s) holding for all p, q, r, s ∈ G is equivalent to the
functional equation (5.1). The solution of this functional equation is also given
by (5.12).

6. The solution of (1.2) on certain groups

In this section, we determine the general solution of the functional equation
(1.2) on certain groups, such as, free groups generated by one element, cyclic
groups of order n, symmetric groups of order n, and dihedral groups of order
2n for n ≥ 2.

Let S(G,C) be the set of all solutions of (1.2). It is easy to see that if f ∈
S(G,C), then (a) f(e) = 0 and (b) f(σ(x)) = f(x) for all x ∈ G. Let SW (G,C)
denote the set of solutions of Whitehead’s functional equation, namely

(6.1) f(xyz) = f(xy)− f(z) + f(yz)− f(x) + f(xz)− f(y)

for all x, y, z ∈ G. Whitehead’s functional equation can be viewed as the ker-

nel of the second order Cauchy difference, namely C
(2)
f (x, y, z) = f(xyz) −

f(xy)− f(yz)− f(xz) + f(x) + f(y) + f(z). From Lemma 3.1, we know that
S(G,C) ⊆ SW (G,C). The set SW (G,C) is an abelian group under point-
wise addition of functions. Since every homomorphism from G into C satis-
fies the Whitehead equation, Hom(G,C) is a subgroup of SW (G,C), that is
Hom(G,C) ≤ SW (G,C).

Lemma 6.1. Let G be a free group generated by the element a. Suppose σ :
G→ G is an endomorphism satisfying σ(σ(x)) = x for all x ∈ G. Then either
σ(x) = x or σ(x) = x−1, where x−1 denotes the inverse element of x.

Proof. Since G is a free group generated by the element a, G is isomorphic to
the additive group of integers. That is, G =

〈
a
〉
' Z. For a fixed integer n ∈ Z,

any map σ : Z→ Z defined by σ(x) = nx is an endomorphism of the additive
group of integers. Since σ(σ(x)) = x for all x ∈ Z, σ(x) = x or σ(x) = −x are
the only possible endomorphisms on the additive group of integers. Hence G,
which is isomorphic Z, has two such endomorphisms on G, namely σ(x) = x
and σ(x) = x−1. �

The following lemma is taken from Ng and Zhao in [12].
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Lemma 6.2. Let G be a free group generated by the element a. If f : G→ C
satisfies the functional equation (3.1) for all x, y, z ∈ G, then

(6.2) f(an) = nf(a) +
n(n− 1)

2
Cf (a, a),

where f(a) and Cf (a, a) := f(a2)− 2f(a) are complex constants. The converse
is also true.

Theorem 6.3. Let G =
〈
a
〉

be a free group generated by the element a in G.
Assume σ : G → G is an endomorphism of G satisfying σ(σ(x)) = x for all
x ∈ G. Let f : G→ C satisfy the functional equation (1.2), that is

f(xy) + f(σ(y)x) = 2f(x) + 2f(y)

for all x, y ∈ G. Then

(6.3) f(an) =

{
n f(a) if σ(a) = a

n2 f(a) if σ(a) = a−1,

where f(a) is a complex constant. The converse is also true.

Proof. Since G =
〈
a
〉

is free group generated by the element a, by Lemma 6.1,

σ(a) = a or σ(a) = a−1.

Case 1. Suppose σ(a) = a. Letting x = an and y = am for some n,m ∈ Z, in
(1.2), we have

f(anam) + f(σ(am) an) = 2f(an) + 2f(am).

Since σ(a) = a, the previous equation can be simplified to

f(an+m) = f(an) + f(am).

By Lemma 3.1, S(G,C) ⊆ SW (G,C). Hence, if f ∈ S(G,C), then f has the
same form as in (6.2). Using the form of f in (6.2) in equation (1.2), we obtain

(n+m)f(a) +
(n+m)(n+m− 1)

2
Cf (a, a)

= (n+m)f(a) +

[
n(n− 1)

2
+
m(m− 1)

2

]
Cf (a, a).

From the last equality, we have[
(n+m) (n+m− 1)

2
− n(n− 1)

2
− m(m− 1)

2

]
Cf (a, a) = 0,

which yields

nmCf (a, a) = 0.

Since nm 6= 0, Cf (a, a) = 0, and thus f in (6.2) yields

f(an) = n f(a)

when σ(a) = a.
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Case 2. Suppose σ(a) = a−1. Again, letting x = an and y = am for some
n,m ∈ Z, in (1.2) and simplifying using the fact that σ(a) = a−1, we obtain

f(an+m) + f(an−m) = 2f(an) + 2f(am).

As in the previous case, putting the form of f in (6.2) into the last equation,
we see that

(n+m)f(a) +
(n+m)(n+m− 1)

2
Cf (a, a)

+ (n−m)f(a) +
(n−m)(n−m− 1)

2
Cf (a, a)

= 2(n+m)f(a) +
[
n(n− 1) +m(m− 1)

]
Cf (a, a).

Simplifying the last equality, we have

m
(

2 f(a)− Cf (a, a)
)

= 0.

Since m 6= 0, we have Cf (a, a) = 2 f(a). Thus, (6.2) yields

f(an) = n f(a) +
1

2
n (n− 1)Cf (a, a)

= n f(a) + (n2 − n) f(a)

= n2 f(a).

This completes the proof of the theorem. �

Let Cm =
〈
a | am = e

〉
be a cyclic group of order m with generator a. Let

Dm =
〈
a, b | am = e, b2 = e, abab = e

〉
be the dihedral group of order 2m

(m ≥ 2), and Sm the symmetric group of order m. The following result can be
collected from Ng and Zhao in [12].

Lemma 6.4. Let the group G be either Cm, Sm or Dm. Let σ : G→ G be an
endomorphism satisfying σ(σ(x)) = x for all x ∈ G. The function f : G → C
is a solution of Whitehead’s functional equation (3.1) for all x, y ∈ G if and
only if f(x) = 0 for all x ∈ G.

The following theorem follows from the above lemma.

Theorem 6.5. Let the group G be either Cm, Sm or Dm. Let σ : G→ G be an
endomorphism satisfying σ(σ(x)) = x for all x ∈ G. The function f : G → C
is a solution of the functional equation (1.2) for all x, y ∈ G if and only if
f(x) = 0 for all x ∈ G.

We end this paper with the following open problem.

Open problem. Let G be a free group generated by two elements a, b. Let σ :
G→ G be an endomorphism satisfying σ(σ(x)) = x for all x ∈ G. Determine all
functions f : G→ C that satisfy the functional equation (1.2) for all x, y ∈ G.



A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION 2181

References

[1] J. Aczél, The general solution of two functional equations by reduction to functions

additive in two variables and with aid of Hamel bases, Glasnik Mat.-Fiz. Astronom.

Drustvo Mat. Fiz. Hrvatske 20 (1965), 65–73.
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