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THE (G
′

G )- EXPANSION METHOD COMBINED WITH THE

RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF

NONLINEAR PDES

E.M.E. ZAYED

Abstract. In this article, we construct exact traveling wave solutions
for nonlinear PDEs in mathematical physics via the (1+1)- dimensional
combined Korteweg- de Vries and modified Korteweg- de Vries (KdV-
mKdV) equation, the (1+1)- dimensional compouned Korteweg- de Vries
Burgers (KdVB) equation,, the (2+1)- dimensional cubic Klien- Gordon
(cKG) equation , the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona
Mahony (GZK-BBM) equation and the modified Korteweg- de Vries -

Zakharov- Kuznetsov (mKdV-ZK) equation, by using the (G
′

G
) -expansion

method combined with the Riccati equation, where G = G(ξ) satisfies the
Riccati equation G′(ξ) = A+BG2 and A, B are arbitrary constants.
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1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated
by many authors( see for example [1-46] ) who are interested in nonlinear physi-
cal phenomena. Many powerful different methods have been presented by those
authors. For integrable nonlinear differential equations, the inverse scattering
transform method [2], the Hirota method [9], the truncated Painleve expansion
method [27,38], the Backlund transform method [15,16] and the exp-function
method [8,31,39,40] are used in looking for the exact solutions. Among non-
integrable nonlinear differential equations there is a wide class of the equations
that referred to as the partially integrable, because these equations become in-
tegrable for some values of their parameters. There are many different methods
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to look for the exact solutions of these equations. The most famous algorithms
are the truncated Painleve expansion method [12], the Weierstrass elliptic func-
tion method [11], the tanh- function method [1,7,34,41] and the Jacobi elliptic
function expansion method [6,13,14,26,28,29,32].

Wang et.al [23] have introduced a simple method which is called the (G
′

G )-
expansion method to look for traveling wave solutions of nonlinear evolution
equations, where G = G(ξ) satisfies the second order linear ordinary differential

equation G
′′
(ξ) + λG′(ξ) + µG(ξ) = 0, where λ and µ are arbitrary constants.

For further references see the articles [4,35,36,44,45]. Recently, Zayed [37 ] has
introduced an alternative method where G = G(ξ) satisfies the Jacobi elliptic
equation [G′(ξ)]2 = e2G

4(ξ) + e1G
2(ξ) + e0, and e2, e1, e0,V are arbitrary

constants . He has determined new families of exact solutions for some nonlinear
evolution equation in mathematical physics.

In the present article, we shall use a different alternative approach. The main
idea of this approach is that the traveling wave solutions of nonlinear partial

differential equations can be expressed by a polynomial in (G
′

G ), where G = G(ξ)

satisfies the Riccati equation G′(ξ) = A + BG2, where ξ = x − V t and A ,

B, V are arbitrary constants, while
′
= d

d ξ . The degree of this polynomial

can be determined by considering the homogeneous balance between the highest
order derivatives and the nonlinear terms appearing in the given nonlinear
equations. The coefficients of this polynomial can be obtained by solving a set
of algebraic equations resulted from the process of using the proposed method.
This approach will play an important role in constructing exact traveling wave
solutions for the nonlinear PDEs in mathematical physics via the KdV-mKdV
equation, the KdVB equation, the cKG equation , the GZK-BBM equation and
the mKdV-ZK equation. These equations have been paid attention by many
researchers in engineering and physics.

2. Description of the (G
′

G ) -expansion method combined with the
Riccati equation

Suppose we have the following nonlinear partial differential equation

F (u, ut, ux, utt, uxt, uxx, ...) = 0, (1)

where u = u(x, t) is an unknown function, F is a polynomial in u(x, t) and its
partial derivatives in which the highest order derivatives and the nonlinear terms
are involved. In the following, we give the main steps of the proposed method:

Step 1 . The traveling wave variable

u(x, t) = u(ξ), ξ = x− V t, (2)

where V is a constant, permits us reducing Eq. (2.1) to an ODE for u = u(ξ) in
the form
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P (u, u
′
, u

′′
, u

′′′
, ...) = 0. (3)

Step 2. Suppose the solution of Eq(2.3) can be expressed by a polynomial

in (G
′

G ) as follows

u(ξ) =

n∑

i=0

αi(
G′

G
)i, (4)

where G = G(ξ) satisfies the following Riccati equation

G′(ξ) = A+BG2, (5)

where αi ,A,B and V are arbitrary constants to be determined provided αn 6= 0.
The positive integer ”n” can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing
in Eq (2.1) or (2.3) . More precisely, we define the degree of u(ξ) as D[u(ξ)] = n

which gives rise to the degree of other expressions as follows

D[
dqu

dξq
] = n+ q, D[up(

dqu

dξq
)s] = np+ s(q + n). (6)

Therefore, we can get the value of n in (2.4), using (2.6).
Step 3. Substituting (2.4) into (2.3) and using Eq (2.5), we obtain poly-

nomials in Gj(ξ) (j = 0,±1,±2, ...).Equating each coefficient of the resulted
polynomials to zero, yields a set of algebraic equations for αi ,A,B and V .

Step 4 . Since the general solutions of Eq (2.5) have been well known for
us ( see Appendix A ), then substituting αi, V and the general solution of Eq
(2.5) into (2.4) we have exact traveling wave solutions of the nonlinear partial
differential equation (2.1).

3. Some applications

In this section, we apply the (G
′

G ) - expansion method combined with the
Riccati equation to construct exact traveling wave solutions for the following
nonlinear PDEs in mathematical physics:

Example 1. We start with the (1+1)- dimensional combined KdV-mKdV equa-
tion [30 ] in the form

ut + αuux + βu2ux + uxxx = 0, (1)

where α and β are nonzero constants. This equation may describe the wave
propagation of the bound particle, sound wave and thermal pulse. This equation
is the most popular soliton equation and often exists in practical problems such
as fluid physics and quantum field theory. An extended Fan’s sub-equation
method is used in [30] for constructing exact traveling wave solutions of Eq.
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(3.1). Let us now solve Eq. (3.1) by the proposed method. To this end, we see
that the traveling wave variable (2.2) permits us converting Eq. (3.1) into the
following ODE:

C − V u+
1

2
αu2 +

1

3
βu3 + u

′′
= 0, (2)

where C is an integration constant. Suppose that the solution of Eq. (3.2) can

be expressed by a polynomial in (G
′

G ) as follows

u(ξ) =

n∑

i=0

αi(
G′

G
)i, (3)

where αi are arbitrary constants provided αn 6= 0, while G(ξ) satisfies the Riccati
equation (2.5).

Considering the homogeneous balance between the highest order derivative
and the nonlinear term in (3.2), we deduce from (2.6) that D(u

′′
) = D (u3).

Therefore n+ 2 = 3n and hence n = 1 . Thus, we get

u(ξ) = α1(
G′

G
) + α0. (4)

From (2.5) and (3.4) we derive the following formulae:

u = α0 + α1AG
−1 + α1BG,

u
′
= α1

[
B2G2 −A2G−2

]
,

u
′′

= 2α1

[
AB2G+BA2G−1 +B3G3 +A3G−3

]
, (5)

and so on.
Substituting (3.5) into (3.2) we get the following polynomial

G−1[αα0α1A+A2Bβα3
1 + α2

0α1Aβ + 2α1A
2B − V Aα1]

+G[−V α1B + αα0α1B +Bβα2
0α1 + βα3

1AB
2 + 2α1AB2]

+G−2[
1

2
αα2

1A
2 +A2βα2

1α0] +G2[
1

2
αα2

1B
2 +B2βα2

1α0]

+G−3[
1

3
βα3

1A
3 + 2α1A

3] +G3[
1

3
βα3

1B
3 + 2α1B

3]

+C − V α0 +
1

2
αα2

0 + αα2
1AB +

1

3
βα3

0 = 0. (6)

Consequently, we have the following system of algebraic equations
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αα0α1A+A2Bβα3
1 + α2

0α1Aβ + 2α1A
2B − V Aα1 = 0,

−V α1B + αα0α1B +Bβα2
0α1 + βα3

1AB
2 + 2α1AB2 = 0,

1

2
αα2

1A
2 +A2βα2

1α0 = 0,

1

2
αα2

1B
2 +B2βα2

1α0 = 0,

1

3
βα3

1A
3 + 2α1A

3 = 0,

1

3
βα3

1B
3 + 2α1B

3 = 0,

C − V α0 +
1

2
αα2

0 + αα2
1AB +

1

3
βα3

0 = 0, (7)

which can be solved to get

α1 = ±
√−6

β
, α0 = − α

2β
, V = −α2

4β
− 4AB, C =

8αAB

β
+

α3

24β2
(8)

Substituting (3.8) into (3.4) yields

u(ξ) = ±
√−6

β
(
G′

G
)− α

2β
, (9)

where

ξ = x+ t (
α2

4β
+ 4AB). (10)

According to the appendix A, we have the following families of exact solutions
Family 1. If A = 1

2 , B = − 1
2 , then we get

u(ξ) = − α

2β
−
√−6

β
i sech ξ, (11)

or

u(ξ) = − α

2β
±
√−6

β
csch ξ, (12)

where ξ = x+ t (α
2

4β − 1) and i =
√−1.

Family 2. If A = B = ± 1
2 , then we get

u(ξ) = − α

2β
+

√−6

β
sec ξ, (13)

or

u(ξ) = − α

2β
±
√−6

β
csc ξ, (14)
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where ξ = x+ t (α
2

4β + 1) .

Family 3. If A = 1, B = −1, then we get

u(ξ) = − α

2β
±
√−6

β
(coth ξ − tanh ξ), (15)

where ξ = x+ t (α
2

4β − 4) .

Family 4. If A = B = 1, then we get

u(ξ) = − α

2β
±
√−6

β
(cot ξ + tan ξ), (16)

where ξ = x+ t (α
2

4β + 4) .

Family 5. If A = 0, B 6= 0, then we get

u(ξ) = − α

2β
±
√−6

β

(
B

Bξ + c1

)
(17)

where ξ = x+ α2t
4β and c1 is an arbitrary constant.

Example 2. We consider the (1+1)- dimensional compound KdVB equation
[46] in the form:

ut + αuux + βu2ux + γuxx − δuxxx = 0, (18)

where α, β, γ and δ are constants. This equation can be thought of as a gen-
eralization of KdV-mKdV and Burgers equations involving nonlinear dispersion
and dissipation effects. The traveling wave solutions of Eq. (3.18) have been
found in [46] using an improved sine-cosine method. Let us now solve Eq. (3.18)
by the proposed method. To this end, we see that the traveling wave variable
(2.2) permits us converting Eq. (3.18) into the following ODE:

C − V u+
1

2
αu2 +

1

3
βu3 + γu

′ − δu
′′
= 0, (19)

where C is an integration constant. Considering the homogeneous balance

between the highest order derivative and the nonlinear term in (3.19), we get
n = 1 . Thus, we have the solution of the Eq. (3.19) in the same form (3.4).
Substituting (3.5) into (3.19) we get the following polynomail

G−1[−V Aα1 + αα0α1A+A2Bβα3
1 + α2

0α1Aβ − 2α1A
2B δ]

+G[−V α1B + αα0α1B +Bβα2
0α1 + βα3

1AB
2 − 2α1AB

2δ]

+G2[
1

2
αα2

1B
2 +B2βα2

1α0 + γα1B
2] +G−2[

1

2
αα2

1A
2 +A2βα2

1α0 − γα1A
2]

+G−3[
1

3
βα3

1A
3 − 2δα1A

3] +G3[
1

3
βα3

1B
3 − 2δα1B

3]



The (G′
G )- expansion method combined with the Riccati equation 357

+C − V α0 +
1

2
αα2

0 + αα2
1AB +

1

3
βα3

0 = 0. (20)

Consequently, we have the following system of algebraic equations

−V Aα1 + αα0α1A+A2Bβα3
1 + α2

0α1Aβ − 2α1A
2B δ = 0,

−V α1B + αα0α1B +Bβα2
0α1 + βα3

1AB2 − 2α1AB2δ = 0,

1

2
αα2

1A
2 +A2βα2

1α0 − γα1A
2 = 0,

1

2
αα2

1B
2 +B2βα2

1α0 + γα1B
2 = 0,

1

3
βα3

1A
3 − 2δα1A

3 = 0,

1

3
βα3

1B
3 − 2δα1B

3 = 0,

C − V α0 +
1

2
αα2

0 + αα2
1AB +

1

3
βα3

0 = 0, (21)

which can be solved to get

α1 = ±
√

6δ

β
, α0 = − α

2β
, V = −α2

4β
+ 4δAB, C =

α3

24β2
− 8αδAB

β
, γ = 0

(22)

Substituting (3.22) into (3.4) yields

u(ξ) = ±
√

6δ

β
(
G′

G
)− α

2β
, (23)

where

ξ = x+ t (
α2

4β
− 4δAB). (24)

According to the appendix A, we have the following families of exact solutions
Family 1. If A = 1

2 , B = − 1
2 , then we get

u(ξ) = − α

2β
−
√

6δ

β
i sechξ, (25)

or

u(ξ) = − α

2β
±
√

6δ

β
csch ξ, (26)

where ξ = x+ t (α
2

4β + δ) and i =
√−1.

Family 2. If A = B = ± 1
2 , then we get
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u(ξ) = − α

2β
+

√
6δ

β
sec ξ, (27)

or

u(ξ) = − α

2β
±
√

6δ

β
csc ξ, (28)

where ξ = x+ t (α
2

4β − δ) .

Family 3. If A = 1, B = −1, then we get

u(ξ) = − α

2β
±
√

6δ

β
(coth ξ − tanh ξ), (29)

where ξ = x+ t (α
2

4β + 4δ) .

Family 4. If A = B = 1, then we get

u(ξ) = − α

2β
±
√

6δ

β
(cot ξ + tan ξ), (30)

where ξ = x+ t (α
2

4β − 4δ) .

Family 5. If A = 0, B 6= 0, then we get

u(ξ) = − α

2β
±
√

6δ

β

(
B

Bξ + c1

)
(31)

where ξ = x+ α2t
4β and c1 is an arbitrary constant.

Note that the results of example 2 are in agreement with the results of example
1 when δ = −1 and γ = 0.

Example 3. We consider the following (2+1)- dimensional cKG equation [24]:

uxx + uyy − utt + αu+ βu3 = 0, (32)

where α and β are nonzero constants. This equation is used to model many
different nonlinear phenomena, including the propagation of dislocation in crys-
tals and the behavior of elementary particles and the propagation of fluxons
in Josephson junctions. Many types of complexiton solutions and soliton solu-
tions for Eq. (3.32) have been found in [24] using the multi- function expansion
method. Let us now solve this equation by the proposed method. To this end,
we see that the traveling wave variable u(x, t) = u(ξ), ξ = x+ y − V t, permits
us converting Eq. (3.32) into the following ODE:

(2− V 2)u
′′
+ αu+ βu3 = 0, (33)
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where V 2 6= 2. Considering the homogeneous balance between the highest order

derivative and the nonlinear term in (3.33), we get n = 1 . Thus, the solution
of Eq. (3.33) has the same form (3.4). Substituting (3.5) into (3.33) we get the
following polynomial:

G−1[2α1A
2B(2− V 2) + αα1A+ 3βα3

1A
2B + 3βα2

0α1A]

+G[2α1AB
2(2− V 2) + αα1B + 3Bβα2

0α1 + 3βα3
1AB2]

+G−2[3A2βα2
1α0] +G2[3B2βα2

1α0]

+G3[βα3
1B

3 + 2α1B
3(2− V 2)] +G−3[βα3

1A
3 + 2α1A

3(2− V 2)]

αα0 + βα3
0 = 0. (34)

Consequently, we have the following system of algebraic equations

2α1A
2B(2− V 2) + αα1A+ 3βα3

1A
2B + 3βα2

0α1A = 0,

2α1AB
2(2− V 2) + αα1B + 3Bβα2

0α1 + 3βα3
1AB

2 = 0,

3A2βα2
1α0 = 0,

3B2βα2
1α0 = 0,

βα3
1A

3 + 2α1A
3(2− V 2) = 0,

βα3
1B

3 + 2α1B
3(2− V 2) = 0,

αα0 + βα3
0 = 0, (35)

which can be solved to get

α1 = ±
√ − α

2βAB
, α0 = 0, V = ±

√
2− α

4AB
. (36)

Substituting (3.36) into (3.4) yields

u(ξ) = ±
√ − α

2βAB
(
G′

G
), (37)

where

ξ = x+ y ∓ t

√
2− α

4AB
. (38)

According to the appendix A, we have the following families of exact solutions:
Family 1. If A = 1

2 , B = − 1
2 , then we get

u(ξ) = −
√

2α

β
i sech ξ, (39)
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or

u(ξ) = ±
√

2α

β
csch ξ, (40)

where ξ = x+ y ∓ t
√
2 + α .

Family 2. If A = B = ± 1
2 , then we get

u(ξ) =

√−2α

β
sec ξ, (41)

or

u(ξ) = ±
√−2α

β
csc ξ, (42)

where ξ = x+ y ∓ t
√
2− α .

Family 3. If A = 1, B = −1, then we get

u(ξ) = ±
√

α

2β
(coth ξ − tanh ξ), (43)

where ξ = x+ y ∓ t
√
2 + α

4 .
Family 4. If A = B = 1, then we get

u(ξ) = ±
√−α

2β
(cot ξ + tan ξ), (44)

where ξ = x+ y ∓ t
√
2− α

4

Example 4. We consider the following (2+1)- dimensional GZK-BBM equation
[25]:

ut + ux + α(u3)x + β(uxt + uyy)x = 0, (45)

where α and β are nonzero constants. Wazwaz [25] has studied this equation
and derived solutions of distinct physical structures: compactons, solitons, soli-
tary patterns and periodic solutions using the tanh-method and the sine-cosine
method. Let us now solve this equation by the proposed method. To this end,
we see that the traveling wave variable u(x, t) = u(ξ), ξ = x+ y − V t, permits
us converting Eq. (3.45) into the following ODE:

C + (1− V )u+ αu3 + β(1− V )u
′′
= 0, (46)

where V 6= 1 and C is the integration constant. Considering the homogeneous

balance between the highest order derivative and the nonlinear term in (3.46),
we get n = 1 . Thus, the solution of Eq. (3.46) has the same form (3.4).
Substituting (3.5) into (3.46), we get the following polynomail:
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G−1[α1A(1− V ) + 3αα1α
2
0A+ 3αα3

1A
2B + 2βBA2α1(1− V )]

+G[α1B(1− V ) + 3αα1α
2
0B + 3αα3

1AB2 + 2βα1(1− V )AB2]

+G−2[3αA2α2
1α0] +G2[3B2αα2

1α0]

+G−3[αα3
1A

3 + 2α1A
3β(1− V )] +G3[αα3

1B
3 + 2α1βB

3(1− V )]

+C + α0(1− V ) + αα3
0 = 0. (47)

Consequently, we have the following system of algebraic equations:

2α1A(1− V ) + 3αα1α
2
0A+ 3αα3

1A
2B + 2βBA2α1(1− V ) = 0,

α1B(1− V ) + 3αα1α
2
0B + 3αα3

1AB2 + 2βα1(1− V )AB2 = 0,

3αA2α2
1α0 = 0,

3B2αα2
1α0 = 0,

αα3
1A

3 + 2α1A
3β(1− V ) = 0,

αα3
1B

3 + 2α1βB
3(1− V ) = 0,

C + α0(1− V ) + αα3
0 = 0, (48)

which can be solved to get

α1 = ±
√

V − 1

2αAB
, α0 = 0, C = 0. (49)

Substituting (3.49) into (3.4) yields

u(ξ) = ±
√

V − 1

2αAB
(
G′

G
), (50)

where

ξ = x+ y − V t . (51)

According to the appendix A, we have the following families of exact solutions:
Family 1. If A = 1

2 , B = − 1
2 , then we get

u(ξ) = −
√

2(1− V )

α
i sech ξ, (52)

or

u(ξ) = ±
√

2(1− V )

α
csch ξ, (53)

Family 2. If A = B = ± 1
2 , then we get
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u(ξ) =

√
2(V − 1)

α
sec ξ, (54)

or

u(ξ) = ±
√

2(V − 1)

α
csc ξ, (55)

Family 3. If A = 1, B = −1, then we get

u(ξ) = ±
√

1− V

2α
(coth ξ − tanh ξ), (56)

Family 4. If A = B = 1, then we get

u(ξ) = ±
√

V − 1

2α
(cot ξ + tan ξ), (57)

Example 5. We consider the following (3+1)- dimensional mKdV-ZK equation
[28]:

ut + αu2ux + (uxx + uyy + uzz)x = 0, (58)

where α is a nonzero constants. Xu [28] has discussed this equation using an
elliptic equation method and found many types of elliptic function solutions.
Let us now solve this equation by the proposed method. To this end, we see
that the traveling wave variable u(x, t) = u(ξ), ξ = x + y + z − V t, permits us
converting Eq. (3.58) into the following ODE:

C − V u+
1

3
αu3 + 3u

′′
= 0, (59)

where C is the integration constant Considering the homogeneous balance be-

tween the highest order derivative and the nonlinear term in (3.59), we get n = 1
. Thus, the solution of Eq. (3.59) has the same form (3.4). Substituting (3.5)
into (3.59), we get the following polynomial:

G−1[−α1AV + αα1α
2
0A+ αα3

1A
2B + 6α1BA2]

+G[−α1BV + αα1α
2
0B + αα3

1AB2 + 6α1AB2]

+G−2[αα0α
2
1A

2] +G2[αα0α
2
1B

2]

+G−3[
1

3
αα3

1A
3 + 6α1A

3] +G3[
1

3
αα3

1B
3 + 6α1B

3]

+C − V α0 +
1

3
αα3

0 = 0. (60)

Consequently, we have the following system of algebraic equations
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−α1AV + αα1α
2
0A+ αα3

1A
2B + 6α1BA2 = 0,

−α1BV + αα1α
2
0B + αα3

1AB
2 + 6α1AB

2 = 0,

αα0α
2
1A

2 = 0,

αα0α
2
1B

2 = 0,

1

3
αα3

1A
3 + 6α1A

3 = 0,

1

3
αα3

1B
3 + 6α1B

3 = 0,

C − V α0 +
1

3
αα3

0 = 0, (61)

which can be solved to get

α1 = ±3

√
−2

α
, α0 = 0, C = 0, V = −12AB, (62)

Substituting (3.62) into (3.4) yields

u(ξ) = ±3

√
−2

α
(
G′

G
), (63)

where

ξ = x+ y + z + 12ABt. (64)

According to the appendix A, we have the following families of exact solutions:
Family 1. If A = 1

2 , B = − 1
2 , then we get

u(ξ) = −3

√
−2

α
i sech ξ, (65)

or

u(ξ) = ±3

√
−2

α
csch ξ, (66)

where ξ = x+ y + z − 3t .
Family 2. If A = B = ± 1

2 , then we get

u(ξ) = 3

√
−2

α
sec ξ, (67)

or

u(ξ) = ±3

√
−2

α
csc ξ, (68)

where ξ = x+ y + z + 3t .
Family 3. If A = 1, B = −1, then we get
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u(ξ) = ±3

√
−2

α
(coth ξ − tanh ξ), (69)

where ξ = x+ y + z − 12t .
Family 4. If A = B = 1, then we get

u(ξ) = ±3

√
−2

α
(cot ξ + tan ξ), (70)

where ξ = x+ y + z + 12t.
Family 5. If A = 0, B 6= 0, then we get

u(ξ) = ±3

√
−2

α

(
B

Bξ + c1

)
, (71)

where ξ = x+ y + z.

Appendix A

The general solutions to the Riccati equation (2.5) are well known [5,24] which
are listed in the following table:

A B The solution G(ξ)
1
2 − 1

2 tanhξ ± i sechξ, coth ξ±cschξ , tanh ξ
2 , coth ξ

2

± 1
2 ± 1

2 secξ ± tan ξ, ± tan ξ
2 , ∓ cot ξ

2 , ±(csc ξ − cot ξ)
1 −1 tanhξ , coth ξ
1 1 tan ξ, − cot ξ
0 6= 0 −1

Bξ+c1
, where c1 is an arbitrary constant.

Other values for the solution G(ξ) of the Eq(2.5) can be found for arbitrary
values of A and B.

4. Conclusions

The main idea of the (G
′

G )- expansion method ( see [4,23,35,36,44,45]) is that
the traveling wave solutions of nonlinear partial differential equations can be

expressed as a polynomial in (G
′

G ), where G(ξ) satisfies a second order linear
ordinary differential equation. In the present article, we have developed this
method, where we have assumed that G(ξ) satisfies the Riccati equation (2.5)
instead of the standard technique used by Wang et.al.[23]. We have applied this
alternative method to some nonlinear PDEs in mathematical physics via the
KdV-mKdV equation, the KdVB equation, the cKG equation, the GZKBBM
equation and the mKdV-ZK equation. We have obtained families of exact so-
lutions of these equations in terms of hyperbolic, trigonometeric and rational
functions.
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