THE ($\frac{G^{\prime}}{G}$)- EXPANSION METHOD COMBINED WITH THE RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

E.M.E. ZAYED

Abstract

In this article, we construct exact traveling wave solutions for nonlinear PDEs in mathematical physics via the ($1+1$)- dimensional combined Korteweg- de Vries and modified Korteweg- de Vries (KdV$m K d V)$ equation, the ($1+1$)- dimensional compouned Korteweg- de Vries Burgers (KdVB) equation,, the ($2+1$)- dimensional cubic Klien- Gordon (cKG) equation , the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona Mahony (GZK-BBM) equation and the modified Korteweg- de Vries -Zakharov- Kuznetsov (mKdV-ZK) equation, by using the ($\frac{G^{\prime}}{G}$) -expansion method combined with the Riccati equation, where $G=G(\xi)$ satisfies the Riccati equation $G^{\prime}(\xi)=A+B G^{2}$ and A, B are arbitrary constants.

AMS Mathematics Subject Classification : 35K99, 35P05, 35P99.
Key words and phrases: The $\left(\frac{G^{\prime}}{G}\right)$ - expansion method, The Riccati equation, Traveling wave solutions, The KdV-mKdV equation, The KdVB equation, The cKG equation, The GZK-BBM equation, The mKdV-ZK equation.

1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors(see for example [1-46]) who are interested in nonlinear physical phenomena. Many powerful different methods have been presented by those authors. For integrable nonlinear differential equations, the inverse scattering transform method [2], the Hirota method [9], the truncated Painleve expansion method $[27,38]$, the Backlund transform method $[15,16]$ and the exp-function method $[8,31,39,40]$ are used in looking for the exact solutions. Among nonintegrable nonlinear differential equations there is a wide class of the equations that referred to as the partially integrable, because these equations become integrable for some values of their parameters. There are many different methods

[^0]to look for the exact solutions of these equations. The most famous algorithms are the truncated Painleve expansion method [12], the Weierstrass elliptic function method [11], the tanh- function method $[1,7,34,41]$ and the Jacobi elliptic function expansion method $[6,13,14,26,28,29,32]$.

Wang et.al [23] have introduced a simple method which is called the $\left(\frac{G^{\prime}}{G}\right)$ expansion method to look for traveling wave solutions of nonlinear evolution equations, where $G=G(\xi)$ satisfies the second order linear ordinary differential equation $G^{\prime \prime}(\xi)+\lambda G^{\prime}(\xi)+\mu G(\xi)=0$, where λ and μ are arbitrary constants. For further references see the articles [4,35,36,44,45]. Recently, Zayed [37] has introduced an alternative method where $G=G(\xi)$ satisfies the Jacobi elliptic equation $\left[G^{\prime}(\xi)\right]^{2}=e_{2} G^{4}(\xi)+e_{1} G^{2}(\xi)+e_{0}$, and e_{2}, e_{1}, e_{0}, V are arbitrary constants. He has determined new families of exact solutions for some nonlinear evolution equation in mathematical physics.

In the present article, we shall use a different alternative approach. The main idea of this approach is that the traveling wave solutions of nonlinear partial differential equations can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$, where $G=G(\xi)$ satisfies the Riccati equation $G^{\prime}(\xi)=A+B G^{2}$, where $\xi=x-V t$ and A, B, V are arbitrary constants, while ${ }^{\prime}=\frac{d}{d \xi}$. The degree of this polynomial can be determined by considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in the given nonlinear equations. The coefficients of this polynomial can be obtained by solving a set of algebraic equations resulted from the process of using the proposed method. This approach will play an important role in constructing exact traveling wave solutions for the nonlinear PDEs in mathematical physics via the KdV-mKdV equation, the KdVB equation, the cKG equation, the GZK-BBM equation and the mKdV-ZK equation. These equations have been paid attention by many researchers in engineering and physics.

2. Description of the $\left(\frac{G^{\prime}}{G}\right)$-expansion method combined with the Riccati equation

Suppose we have the following nonlinear partial differential equation

$$
\begin{equation*}
F\left(u, u_{t}, u_{x}, u_{t t}, u_{x t}, u_{x x}, \ldots\right)=0, \tag{1}
\end{equation*}
$$

where $u=u(x, t)$ is an unknown function, F is a polynomial in $u(x, t)$ and its partial derivatives in which the highest order derivatives and the nonlinear terms are involved. In the following, we give the main steps of the proposed method:

Step 1. The traveling wave variable

$$
\begin{equation*}
u(x, t)=u(\xi), \xi=x-V t, \tag{2}
\end{equation*}
$$

where V is a constant, permits us reducing Eq. (2.1) to an ODE for $u=u(\xi)$ in the form

$$
\begin{equation*}
P\left(u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}, \ldots\right)=0 \tag{3}
\end{equation*}
$$

Step 2. Suppose the solution of $\mathrm{Eq}(2.3)$ can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows

$$
\begin{equation*}
u(\xi)=\sum_{i=0}^{n} \alpha_{i}\left(\frac{G^{\prime}}{G}\right)^{i} \tag{4}
\end{equation*}
$$

where $G=G(\xi)$ satisfies the following Riccati equation

$$
\begin{equation*}
G^{\prime}(\xi)=A+B G^{2} \tag{5}
\end{equation*}
$$

where α_{i}, A, B and V are arbitrary constants to be determined provided $\alpha_{n} \neq 0$. The positive integer " n " can be determined by considering the homogeneous balance between the highest order derivatives and the nonlinear terms appearing in $\mathrm{Eq}(2.1)$ or (2.3) . More precisely, we define the degree of $u(\xi)$ as $D[u(\xi)]=n$
which gives rise to the degree of other expressions as follows

$$
\begin{equation*}
D\left[\frac{d^{q} u}{d \xi^{q}}\right]=n+q, D\left[u^{p}\left(\frac{d^{q} u}{d \xi^{q}}\right)^{s}\right]=n p+s(q+n) . \tag{6}
\end{equation*}
$$

Therefore, we can get the value of n in (2.4), using (2.6).
Step 3. Substituting (2.4) into (2.3) and using Eq (2.5), we obtain polynomials in $G^{j}(\xi)(j=0, \pm 1, \pm 2, \ldots)$.Equating each coefficient of the resulted polynomials to zero, yields a set of algebraic equations for α_{i}, A, B and V.

Step 4 . Since the general solutions of Eq (2.5) have been well known for us (see Appendix A), then substituting α_{i}, V and the general solution of Eq (2.5) into (2.4) we have exact traveling wave solutions of the nonlinear partial differential equation (2.1).

3. Some applications

In this section, we apply the $\left(\frac{G^{\prime}}{G}\right)$ - expansion method combined with the Riccati equation to construct exact traveling wave solutions for the following nonlinear PDEs in mathematical physics:

Example 1. We start with the (1+1)- dimensional combined KdV -mKdV equation [30] in the form

$$
\begin{equation*}
u_{t}+\alpha u u_{x}+\beta u^{2} u_{x}+u_{x x x}=0 \tag{1}
\end{equation*}
$$

where α and β are nonzero constants. This equation may describe the wave propagation of the bound particle, sound wave and thermal pulse. This equation is the most popular soliton equation and often exists in practical problems such as fluid physics and quantum field theory. An extended Fan's sub-equation method is used in [30] for constructing exact traveling wave solutions of Eq.
(3.1). Let us now solve Eq. (3.1) by the proposed method. To this end, we see that the traveling wave variable (2.2) permits us converting Eq. (3.1) into the following ODE:

$$
\begin{equation*}
C-V u+\frac{1}{2} \alpha u^{2}+\frac{1}{3} \beta u^{3}+u^{\prime \prime}=0 \tag{2}
\end{equation*}
$$

where C is an integration constant. Suppose that the solution of Eq. (3.2) can be expressed by a polynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows

$$
\begin{equation*}
u(\xi)=\sum_{i=0}^{n} \alpha_{i}\left(\frac{G^{\prime}}{G}\right)^{i} \tag{3}
\end{equation*}
$$

where α_{i} are arbitrary constants provided $\alpha_{n} \neq 0$, while $G(\xi)$ satisfies the Riccati equation (2.5).

Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.2), we deduce from (2.6) that $D\left(u^{\prime \prime}\right)=D\left(u^{3}\right)$. Therefore $n+2=3 n$ and hence $n=1$. Thus, we get

$$
\begin{equation*}
u(\xi)=\alpha_{1}\left(\frac{G^{\prime}}{G}\right)+\alpha_{0} \tag{4}
\end{equation*}
$$

From (2.5) and (3.4) we derive the following formulae:

$$
\begin{gather*}
u=\alpha_{0}+\alpha_{1} A G^{-1}+\alpha_{1} B G, \\
u^{\prime}=\alpha_{1}\left[B^{2} G^{2}-A^{2} G^{-2}\right], \\
u^{\prime \prime}=2 \alpha_{1}\left[A B^{2} G+B A^{2} G^{-1}+B^{3} G^{3}+A^{3} G^{-3}\right], \tag{5}
\end{gather*}
$$

and so on.
Substituting (3.5) into (3.2) we get the following polynomial

$$
\begin{align*}
& G^{-1}\left[\alpha \alpha_{0} \alpha_{1} A+A^{2} B \beta \alpha_{1}^{3}+\alpha_{0}^{2} \alpha_{1} A \beta+2 \alpha_{1} A^{2} B-V A \alpha_{1}\right] \\
& +G\left[-V \alpha_{1} B+\alpha \alpha_{0} \alpha_{1} B+B \beta \alpha_{0}^{2} \alpha_{1}+\beta \alpha_{1}^{3} A B^{2}+2 \alpha_{1} A B^{2}\right] \\
& +G^{-2}\left[\frac{1}{2} \alpha \alpha_{1}^{2} A^{2}+A^{2} \beta \alpha_{1}^{2} \alpha_{0}\right]+G^{2}\left[\frac{1}{2} \alpha \alpha_{1}^{2} B^{2}+B^{2} \beta \alpha_{1}^{2} \alpha_{0}\right] \\
& +G^{-3}\left[\frac{1}{3} \beta \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3}\right]+G^{3}\left[\frac{1}{3} \beta \alpha_{1}^{3} B^{3}+2 \alpha_{1} B^{3}\right] \\
& \quad+C-V \alpha_{0}+\frac{1}{2} \alpha \alpha_{0}^{2}+\alpha \alpha_{1}^{2} A B+\frac{1}{3} \beta \alpha_{0}^{3}=0 . \tag{6}
\end{align*}
$$

Consequently, we have the following system of algebraic equations

$$
\begin{align*}
\alpha \alpha_{0} \alpha_{1} A+A^{2} B \beta \alpha_{1}^{3}+\alpha_{0}^{2} \alpha_{1} A \beta+2 \alpha_{1} A^{2} B-V A \alpha_{1} & =0, \\
-V \alpha_{1} B+\alpha \alpha_{0} \alpha_{1} B+B \beta \alpha_{0}^{2} \alpha_{1}+\beta \alpha_{1}^{3} A B^{2}+2 \alpha_{1} A B^{2} & =0, \\
\frac{1}{2} \alpha \alpha_{1}^{2} A^{2}+A^{2} \beta \alpha_{1}^{2} \alpha_{0} & =0, \\
\frac{1}{2} \alpha \alpha_{1}^{2} B^{2}+B^{2} \beta \alpha_{1}^{2} \alpha_{0} & =0, \\
\frac{1}{3} \beta \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3} & =0, \\
\frac{1}{3} \beta \alpha_{1}^{3} B^{3}+2 \alpha_{1} B^{3} & =0, \\
C-V \alpha_{0}+\frac{1}{2} \alpha \alpha_{0}^{2}+\alpha \alpha_{1}^{2} A B+\frac{1}{3} \beta \alpha_{0}^{3} & =0, \tag{7}
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{1}= \pm \sqrt{\frac{-6}{\beta}}, \quad \alpha_{0}=-\frac{\alpha}{2 \beta}, \quad V=-\frac{\alpha^{2}}{4 \beta}-4 A B, \quad C=\frac{8 \alpha A B}{\beta}+\frac{\alpha^{3}}{24 \beta^{2}} \tag{8}
\end{equation*}
$$

Substituting (3.8) into (3.4) yields

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{-6}{\beta}}\left(\frac{G^{\prime}}{G}\right)-\frac{\alpha}{2 \beta}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}+4 A B\right) \tag{10}
\end{equation*}
$$

According to the appendix A, we have the following families of exact solutions
Family 1. If $A=\frac{1}{2}, B=-\frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta}-\sqrt{\frac{-6}{\beta}} i \text { sech } \xi \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{-6}{\beta}} \operatorname{csch} \xi \tag{12}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}-1\right)$ and $i=\sqrt{-1}$.
Family 2. If $A=B= \pm \frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta}+\sqrt{\frac{-6}{\beta}} \sec \xi \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{-6}{\beta}} \csc \xi, \tag{14}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}+1\right)$.
Family 3 . If $A=1, B=-1$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{-6}{\beta}}(\operatorname{coth} \xi-\tanh \xi) \tag{15}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}-4\right)$.
Family 4. If $A=B=1$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{-6}{\beta}}(\cot \xi+\tan \xi) \tag{16}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}+4\right)$.
Family 5. If $A=0, B \neq 0$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{-6}{\beta}}\left(\frac{B}{B \xi+c_{1}}\right) \tag{17}
\end{equation*}
$$

where $\xi=x+\frac{\alpha^{2} t}{4 \beta}$ and c_{1} is an arbitrary constant.
Example 2. We consider the (1+1)- dimensional compound KdVB equation [46] in the form:

$$
\begin{equation*}
u_{t}+\alpha u u_{x}+\beta u^{2} u_{x}+\gamma u_{x x}-\delta u_{x x x}=0 \tag{18}
\end{equation*}
$$

where α, β, γ and δ are constants. This equation can be thought of as a generalization of $\mathrm{KdV}-\mathrm{mKdV}$ and Burgers equations involving nonlinear dispersion and dissipation effects. The traveling wave solutions of Eq. (3.18) have been found in [46] using an improved sine-cosine method. Let us now solve Eq. (3.18) by the proposed method. To this end, we see that the traveling wave variable (2.2) permits us converting Eq. (3.18) into the following ODE:

$$
\begin{equation*}
C-V u+\frac{1}{2} \alpha u^{2}+\frac{1}{3} \beta u^{3}+\gamma u^{\prime}-\delta u^{\prime \prime}=0 \tag{19}
\end{equation*}
$$

where C is an integration constant. Considering the homogeneous balance
between the highest order derivative and the nonlinear term in (3.19), we get $n=1$. Thus, we have the solution of the Eq. (3.19) in the same form (3.4). Substituting (3.5) into (3.19) we get the following polynomail

$$
\begin{aligned}
& G^{-1}\left[-V A \alpha_{1}+\alpha \alpha_{0} \alpha_{1} A+A^{2} B \beta \alpha_{1}^{3}+\alpha_{0}^{2} \alpha_{1} A \beta-2 \alpha_{1} A^{2} B \delta\right] \\
& +G\left[-V \alpha_{1} B+\alpha \alpha_{0} \alpha_{1} B+B \beta \alpha_{0}^{2} \alpha_{1}+\beta \alpha_{1}^{3} A B^{2}-2 \alpha_{1} A B^{2} \delta\right] \\
& +G^{2}\left[\frac{1}{2} \alpha \alpha_{1}^{2} B^{2}+B^{2} \beta \alpha_{1}^{2} \alpha_{0}+\gamma \alpha_{1} B^{2}\right]+G^{-2}\left[\frac{1}{2} \alpha \alpha_{1}^{2} A^{2}+A^{2} \beta \alpha_{1}^{2} \alpha_{0}-\gamma \alpha_{1} A^{2}\right] \\
& +G^{-3}\left[\frac{1}{3} \beta \alpha_{1}^{3} A^{3}-2 \delta \alpha_{1} A^{3}\right]+G^{3}\left[\frac{1}{3} \beta \alpha_{1}^{3} B^{3}-2 \delta \alpha_{1} B^{3}\right]
\end{aligned}
$$

$$
\begin{equation*}
+C-V \alpha_{0}+\frac{1}{2} \alpha \alpha_{0}^{2}+\alpha \alpha_{1}^{2} A B+\frac{1}{3} \beta \alpha_{0}^{3}=0 \tag{20}
\end{equation*}
$$

Consequently, we have the following system of algebraic equations

$$
\begin{align*}
-V A \alpha_{1}+\alpha \alpha_{0} \alpha_{1} A+A^{2} B \beta \alpha_{1}^{3}+\alpha_{0}^{2} \alpha_{1} A \beta-2 \alpha_{1} A^{2} B \delta & =0, \\
-V \alpha_{1} B+\alpha \alpha_{0} \alpha_{1} B+B \beta \alpha_{0}^{2} \alpha_{1}+\beta \alpha_{1}^{3} A B^{2}-2 \alpha_{1} A B^{2} \delta & =0, \\
\frac{1}{2} \alpha \alpha_{1}^{2} A^{2}+A^{2} \beta \alpha_{1}^{2} \alpha_{0}-\gamma \alpha_{1} A^{2} & =0, \\
\frac{1}{2} \alpha \alpha_{1}^{2} B^{2}+B^{2} \beta \alpha_{1}^{2} \alpha_{0}+\gamma \alpha_{1} B^{2} & =0, \\
\frac{1}{3} \beta \alpha_{1}^{3} A^{3}-2 \delta \alpha_{1} A^{3} & =0, \\
\frac{1}{3} \beta \alpha_{1}^{3} B^{3}-2 \delta \alpha_{1} B^{3} & =0, \\
C-V \alpha_{0}+\frac{1}{2} \alpha \alpha_{0}^{2}+\alpha \alpha_{1}^{2} A B+\frac{1}{3} \beta \alpha_{0}^{3} & =0, \tag{21}
\end{align*}
$$

which can be solved to get
$\alpha_{1}= \pm \sqrt{\frac{6 \delta}{\beta}}, \quad \alpha_{0}=-\frac{\alpha}{2 \beta}, \quad V=-\frac{\alpha^{2}}{4 \beta}+4 \delta A B, \quad C=\frac{\alpha^{3}}{24 \beta^{2}}-\frac{8 \alpha \delta A B}{\beta}, \quad \gamma=0$
Substituting (3.22) into (3.4) yields

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{6 \delta}{\beta}}\left(\frac{G^{\prime}}{G}\right)-\frac{\alpha}{2 \beta}, \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}-4 \delta A B\right) \tag{24}
\end{equation*}
$$

According to the appendix A , we have the following families of exact solutions
Family 1. If $A=\frac{1}{2}, B=-\frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta}-\sqrt{\frac{6 \delta}{\beta}} i \operatorname{sech} \xi \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{6 \delta}{\beta}} \operatorname{csch} \xi \tag{26}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}+\delta\right)$ and $i=\sqrt{-1}$.
Family 2. If $A=B= \pm \frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta}+\sqrt{\frac{6 \delta}{\beta}} \sec \xi \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{6 \delta}{\beta}} \csc \xi \tag{28}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}-\delta\right)$.
Family 3 . If $A=1, B=-1$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{6 \delta}{\beta}}(\operatorname{coth} \xi-\tanh \xi) \tag{29}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}+4 \delta\right)$.
Family 4. If $A=B=1$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{6 \delta}{\beta}}(\cot \xi+\tan \xi) \tag{30}
\end{equation*}
$$

where $\xi=x+t\left(\frac{\alpha^{2}}{4 \beta}-4 \delta\right)$.
Family 5. If $A=0, B \neq 0$, then we get

$$
\begin{equation*}
u(\xi)=-\frac{\alpha}{2 \beta} \pm \sqrt{\frac{6 \delta}{\beta}}\left(\frac{B}{B \xi+c_{1}}\right) \tag{31}
\end{equation*}
$$

where $\xi=x+\frac{\alpha^{2} t}{4 \beta}$ and c_{1} is an arbitrary constant.
Note that the results of example 2 are in agreement with the results of example 1 when $\delta=-1$ and $\gamma=0$.

Example 3. We consider the following (2+1)- dimensional cKG equation [24]:

$$
\begin{equation*}
u_{x x}+u_{y y}-u_{t t}+\alpha u+\beta u^{3}=0 \tag{32}
\end{equation*}
$$

where α and β are nonzero constants. This equation is used to model many different nonlinear phenomena, including the propagation of dislocation in crystals and the behavior of elementary particles and the propagation of fluxons in Josephson junctions. Many types of complexiton solutions and soliton solutions for Eq. (3.32) have been found in [24] using the multi- function expansion method. Let us now solve this equation by the proposed method. To this end, we see that the traveling wave variable $u(x, t)=u(\xi), \xi=x+y-V t$, permits us converting Eq. (3.32) into the following ODE:

$$
\begin{equation*}
\left(2-V^{2}\right) u^{\prime \prime}+\alpha u+\beta u^{3}=0 \tag{33}
\end{equation*}
$$

where $V^{2} \neq 2$. Considering the homogeneous balance between the highest order
derivative and the nonlinear term in (3.33), we get $n=1$. Thus, the solution of Eq. (3.33) has the same form (3.4). Substituting (3.5) into (3.33) we get the following polynomial:

$$
\begin{align*}
& G^{-1}\left[2 \alpha_{1} A^{2} B\left(2-V^{2}\right)+\alpha \alpha_{1} A+3 \beta \alpha_{1}^{3} A^{2} B+3 \beta \alpha_{0}^{2} \alpha_{1} A\right] \\
& +G\left[2 \alpha_{1} A B^{2}\left(2-V^{2}\right)+\alpha \alpha_{1} B+3 B \beta \alpha_{0}^{2} \alpha_{1}+3 \beta \alpha_{1}^{3} A B^{2}\right] \\
& +G^{-2}\left[3 A^{2} \beta \alpha_{1}^{2} \alpha_{0}\right]+G^{2}\left[3 B^{2} \beta \alpha_{1}^{2} \alpha_{0}\right] \\
& +G^{3}\left[\beta \alpha_{1}^{3} B^{3}+2 \alpha_{1} B^{3}\left(2-V^{2}\right)\right]+G^{-3}\left[\beta \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3}\left(2-V^{2}\right)\right] \\
& \qquad \alpha \alpha_{0}+\beta \alpha_{0}^{3}=0 . \tag{34}
\end{align*}
$$

Consequently, we have the following system of algebraic equations

$$
\begin{align*}
2 \alpha_{1} A^{2} B\left(2-V^{2}\right)+\alpha \alpha_{1} A+3 \beta \alpha_{1}^{3} A^{2} B+3 \beta \alpha_{0}^{2} \alpha_{1} A & =0, \\
2 \alpha_{1} A B^{2}\left(2-V^{2}\right)+\alpha \alpha_{1} B+3 B \beta \alpha_{0}^{2} \alpha_{1}+3 \beta \alpha_{1}^{3} A B^{2} & =0, \\
3 A^{2} \beta \alpha_{1}^{2} \alpha_{0} & =0, \\
3 B^{2} \beta \alpha_{1}^{2} \alpha_{0} & =0, \\
\beta \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3}\left(2-V^{2}\right) & =0, \\
\beta \alpha_{1}^{3} B^{3}+2 \alpha_{1} B^{3}\left(2-V^{2}\right) & =0, \\
\alpha \alpha_{0}+\beta \alpha_{0}^{3} & =0, \tag{35}
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{1}= \pm \sqrt{\frac{-\alpha}{2 \beta A B}}, \quad \alpha_{0}=0, \quad V= \pm \sqrt{2-\frac{\alpha}{4 A B}} \tag{36}
\end{equation*}
$$

Substituting (3.36) into (3.4) yields

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{-\alpha}{2 \beta A B}}\left(\frac{G^{\prime}}{G}\right) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y \mp t \sqrt{2-\frac{\alpha}{4 A B}} . \tag{38}
\end{equation*}
$$

According to the appendix A , we have the following families of exact solutions:
Family 1. If $A=\frac{1}{2}, B=-\frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\sqrt{\frac{2 \alpha}{\beta}} i \operatorname{sech} \xi \tag{39}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{2 \alpha}{\beta}} \operatorname{csch} \xi \tag{40}
\end{equation*}
$$

where $\xi=x+y \mp t \sqrt{2+\alpha}$.
Family 2. If $A=B= \pm \frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=\sqrt{\frac{-2 \alpha}{\beta}} \sec \xi \tag{41}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{-2 \alpha}{\beta}} \csc \quad \xi \tag{42}
\end{equation*}
$$

where $\xi=x+y \mp t \sqrt{2-\alpha}$.
Family 3. If $A=1, B=-1$, then we get

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{\alpha}{2 \beta}}(\operatorname{coth} \xi-\tanh \xi) \tag{43}
\end{equation*}
$$

where $\xi=x+y \mp t \sqrt{2+\frac{\alpha}{4}}$.
Family 4. If $A=B=1$, then we get

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{-\alpha}{2 \beta}}(\cot \xi+\tan \xi) \tag{44}
\end{equation*}
$$

where $\xi=x+y \mp t \sqrt{2-\frac{\alpha}{4}}$
Example 4. We consider the following (2+1)- dimensional GZK-BBM equation [25]:

$$
\begin{equation*}
u_{t}+u_{x}+\alpha\left(u^{3}\right)_{x}+\beta\left(u_{x t}+u_{y y}\right)_{x}=0 \tag{45}
\end{equation*}
$$

where α and β are nonzero constants. Wazwaz [25] has studied this equation and derived solutions of distinct physical structures: compactons, solitons, solitary patterns and periodic solutions using the tanh-method and the sine-cosine method. Let us now solve this equation by the proposed method. To this end, we see that the traveling wave variable $u(x, t)=u(\xi), \xi=x+y-V t$, permits us converting Eq. (3.45) into the following ODE:

$$
\begin{equation*}
C+(1-V) u+\alpha u^{3}+\beta(1-V) u^{\prime \prime}=0 \tag{46}
\end{equation*}
$$

where $V \neq 1$ and C is the integration constant. Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.46), we get $n=1$. Thus, the solution of Eq. (3.46) has the same form (3.4). Substituting (3.5) into (3.46), we get the following polynomail:

$$
\begin{align*}
& G^{-1}\left[\alpha_{1} A(1-V)+3 \alpha \alpha_{1} \alpha_{0}^{2} A+3 \alpha \alpha_{1}^{3} A^{2} B+2 \beta B A^{2} \alpha_{1}(1-V)\right] \\
& +G\left[\alpha_{1} B(1-V)+3 \alpha \alpha_{1} \alpha_{0}^{2} B+3 \alpha \alpha_{1}^{3} A B^{2}+2 \beta \alpha_{1}(1-V) A B^{2}\right] \\
& +G^{-2}\left[3 \alpha A^{2} \alpha_{1}^{2} \alpha_{0}\right]+G^{2}\left[3 B^{2} \alpha \alpha_{1}^{2} \alpha_{0}\right] \\
& +G^{-3}\left[\alpha \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3} \beta(1-V)\right]+G^{3}\left[\alpha \alpha_{1}^{3} B^{3}+2 \alpha_{1} \beta B^{3}(1-V)\right] \\
& \quad+C+\alpha_{0}(1-V)+\alpha \alpha_{0}^{3}=0 . \tag{47}
\end{align*}
$$

Consequently, we have the following system of algebraic equations:

$$
\begin{align*}
2 \alpha_{1} A(1-V)+3 \alpha \alpha_{1} \alpha_{0}^{2} A+3 \alpha \alpha_{1}^{3} A^{2} B+2 \beta B A^{2} \alpha_{1}(1-V) & =0, \\
\alpha_{1} B(1-V)+3 \alpha \alpha_{1} \alpha_{0}^{2} B+3 \alpha \alpha_{1}^{3} A B^{2}+2 \beta \alpha_{1}(1-V) A B^{2} & =0, \\
3 \alpha A^{2} \alpha_{1}^{2} \alpha_{0} & =0, \\
3 B^{2} \alpha \alpha_{1}^{2} \alpha_{0} & =0, \\
\alpha \alpha_{1}^{3} A^{3}+2 \alpha_{1} A^{3} \beta(1-V) & =0, \\
\alpha \alpha_{1}^{3} B^{3}+2 \alpha_{1} \beta B^{3}(1-V) & =0, \\
C+\alpha_{0}(1-V)+\alpha \alpha_{0}^{3} & =0, \tag{48}
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{1}= \pm \sqrt{\frac{V-1}{2 \alpha A B}}, \alpha_{0}=0, C=0 \tag{49}
\end{equation*}
$$

Substituting (3.49) into (3.4) yields

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{V-1}{2 \alpha A B}}\left(\frac{G^{\prime}}{G}\right) \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y-V t . \tag{51}
\end{equation*}
$$

According to the appendix A , we have the following families of exact solutions:
Family 1. If $A=\frac{1}{2}, B=-\frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-\sqrt{\frac{2(1-V)}{\alpha}} i \operatorname{sech} \xi \tag{52}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{2(1-V)}{\alpha}} \operatorname{csch} \xi \tag{53}
\end{equation*}
$$

Family 2. If $A=B= \pm \frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=\sqrt{\frac{2(V-1)}{\alpha}} \sec \xi \tag{54}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{2(V-1)}{\alpha}} \csc \quad \xi \tag{55}
\end{equation*}
$$

Family 3 . If $A=1, B=-1$, then we get

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{1-V}{2 \alpha}}(\operatorname{coth} \xi-\tanh \xi) \tag{56}
\end{equation*}
$$

Family 4. If $A=B=1$, then we get

$$
\begin{equation*}
u(\xi)= \pm \sqrt{\frac{V-1}{2 \alpha}}(\cot \xi+\tan \xi) \tag{57}
\end{equation*}
$$

Example 5. We consider the following (3+1)- dimensional mKdV-ZK equation [28]:

$$
\begin{equation*}
u_{t}+\alpha u^{2} u_{x}+\left(u_{x x}+u_{y y}+u_{z z}\right)_{x}=0 \tag{58}
\end{equation*}
$$

where α is a nonzero constants. Xu [28] has discussed this equation using an elliptic equation method and found many types of elliptic function solutions. Let us now solve this equation by the proposed method. To this end, we see that the traveling wave variable $u(x, t)=u(\xi), \xi=x+y+z-V t$, permits us converting Eq. (3.58) into the following ODE:

$$
\begin{equation*}
C-V u+\frac{1}{3} \alpha u^{3}+3 u^{\prime \prime}=0 \tag{59}
\end{equation*}
$$

where C is the integration constant Considering the homogeneous balance between the highest order derivative and the nonlinear term in (3.59), we get $n=1$. Thus, the solution of Eq. (3.59) has the same form (3.4). Substituting (3.5) into (3.59), we get the following polynomial:

$$
\begin{align*}
& G^{-1}\left[-\alpha_{1} A V+\alpha \alpha_{1} \alpha_{0}^{2} A+\alpha \alpha_{1}^{3} A^{2} B+6 \alpha_{1} B A^{2}\right] \\
& +G\left[-\alpha_{1} B V+\alpha \alpha_{1} \alpha_{0}^{2} B+\alpha \alpha_{1}^{3} A B^{2}+6 \alpha_{1} A B^{2}\right] \\
& +G^{-2}\left[\alpha \alpha_{0} \alpha_{1}^{2} A^{2}\right]+G^{2}\left[\alpha \alpha_{0} \alpha_{1}^{2} B^{2}\right] \\
& +G^{-3}\left[\frac{1}{3} \alpha \alpha_{1}^{3} A^{3}+6 \alpha_{1} A^{3}\right]+G^{3}\left[\frac{1}{3} \alpha \alpha_{1}^{3} B^{3}+6 \alpha_{1} B^{3}\right] \\
& \quad+C-V \alpha_{0}+\frac{1}{3} \alpha \alpha_{0}^{3}=0 \tag{60}
\end{align*}
$$

Consequently, we have the following system of algebraic equations

$$
\begin{align*}
-\alpha_{1} A V+\alpha \alpha_{1} \alpha_{0}^{2} A+\alpha \alpha_{1}^{3} A^{2} B+6 \alpha_{1} B A^{2} & =0, \\
-\alpha_{1} B V+\alpha \alpha_{1} \alpha_{0}^{2} B+\alpha \alpha_{1}^{3} A B^{2}+6 \alpha_{1} A B^{2} & =0, \\
\alpha \alpha_{0} \alpha_{1}^{2} A^{2} & =0, \\
\alpha \alpha_{0} \alpha_{1}^{2} B^{2} & =0, \\
\frac{1}{3} \alpha \alpha_{1}^{3} A^{3}+6 \alpha_{1} A^{3} & =0, \\
\frac{1}{3} \alpha \alpha_{1}^{3} B^{3}+6 \alpha_{1} B^{3} & =0, \\
C-V \alpha_{0}+\frac{1}{3} \alpha \alpha_{0}^{3} & =0, \tag{61}
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
\alpha_{1}= \pm 3 \sqrt{\frac{-2}{\alpha}}, \quad \alpha_{0}=0, \quad C=0, \quad V=-12 A B \tag{62}
\end{equation*}
$$

Substituting (3.62) into (3.4) yields

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}}\left(\frac{G^{\prime}}{G}\right) \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=x+y+z+12 A B t . \tag{64}
\end{equation*}
$$

According to the appendix A, we have the following families of exact solutions: Family 1. If $A=\frac{1}{2}, B=-\frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=-3 \sqrt{\frac{-2}{\alpha}} i \operatorname{sech} \xi \tag{65}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}} \operatorname{csch} \xi \tag{66}
\end{equation*}
$$

where $\xi=x+y+z-3 t$.
Family 2. If $A=B= \pm \frac{1}{2}$, then we get

$$
\begin{equation*}
u(\xi)=3 \sqrt{\frac{-2}{\alpha}} \sec \xi \tag{67}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}} \csc \xi \tag{68}
\end{equation*}
$$

where $\xi=x+y+z+3 t$.
Family 3 . If $A=1, B=-1$, then we get

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}}(\operatorname{coth} \xi-\tanh \xi) \tag{69}
\end{equation*}
$$

where $\xi=x+y+z-12 t$.
Family 4. If $A=B=1$, then we get

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}}(\cot \xi+\tan \xi) \tag{70}
\end{equation*}
$$

where $\xi=x+y+z+12 t$.
Family 5. If $A=0, B \neq 0$, then we get

$$
\begin{equation*}
u(\xi)= \pm 3 \sqrt{\frac{-2}{\alpha}}\left(\frac{B}{B \xi+c_{1}}\right) \tag{71}
\end{equation*}
$$

where $\xi=x+y+z$.

Appendix A

The general solutions to the Riccati equation (2.5) are well known [5,24] which are listed in the following table:

A	B	The solution $G(\xi)$
$\frac{1}{2}$	$-\frac{1}{2}$	$\tanh \xi \pm i \operatorname{sech} \xi, \operatorname{coth} \xi \pm \operatorname{csch} \xi, \quad \tanh \frac{\xi}{2}, \operatorname{coth} \frac{\xi}{2}$
$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$\sec \xi \pm \tan \xi, \quad \pm \tan \frac{\xi}{2}, \mp \cot \frac{\xi}{2}, \quad \pm(\csc \xi-\cot \xi)$
1	-1	$\tanh \xi, \quad \operatorname{coth} \xi$
1	1	$\tan \xi, \quad-\cot \xi$
0	$\neq 0$	$\frac{-1}{B \xi+c_{1}}, \quad$ where c_{1} is an arbitrary constant.

Other values for the solution $G(\xi)$ of the $\mathrm{Eq}(2.5)$ can be found for arbitrary values of A and B.

4. Conclusions

The main idea of the $\left(\frac{G^{\prime}}{G}\right)$ - expansion method (see $[4,23,35,36,44,45]$) is that the traveling wave solutions of nonlinear partial differential equations can be expressed as a polynomial in $\left(\frac{G^{\prime}}{G}\right)$, where $G(\xi)$ satisfies a second order linear ordinary differential equation. In the present article, we have developed this method, where we have assumed that $G(\xi)$ satisfies the Riccati equation (2.5) instead of the standard technique used by Wang et.al.[23]. We have applied this alternative method to some nonlinear PDEs in mathematical physics via the KdV-mKdV equation, the KdVB equation, the cKG equation, the GZKBBM equation and the mKdV-ZK equation. We have obtained families of exact solutions of these equations in terms of hyperbolic, trigonometeric and rational functions.

References

1. M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical models, Appl.Math.Comput, 190 (2007) 988-996.
2. M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge Univ. Press, Cambridge, 1991.
3. C.L.Bai and H.Zhao, Generalized method to construct the solitonic solutions to (3+1)dimensional nonlinear equation, Phys. Letters A, 354 (2006) 428-436.
4. A.Bekir, Application of the $\left(\frac{G^{\prime}}{G}\right)$ - expansion method for nonlinear evolution equations,Phys.Letters A, 372 (2008) 3400-3406.
5. A.Bekir, The tanh-coth method combined with the Riccati equation for solving nonlinear equation, Chaos, Solitons and Fractals, 40 (2009) 1467-1474.
6. Y.Chen and Q.Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to $(1+1)$ dimensional dispersive long wave equation, Chaos, Solitons and Fractals, 24 (2005) 745-757.
7. E.G. Fan, Extended tanh- function method and its applications to nonlinear equations,Phys.Letters A, 277 (2000) 212-218.
8. J.H.He and X.H.Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006) 700-708.
9. R.Hirota, Exact solution of the KdV equation for multiple collisions of solutions, Phys. Rev. Letters 27 (1971) 1192-1194.
10. J.Q.Hu, An algebraic method exactly solving two high dimensional nonlinear evolution equations, Chaos, Solitons and Fractals, 23 (2005) 391-398.
11. N.A. Kudryashov, Exact solutions of the generalized Kuramoto- Sivashinsky equation, Phys. Letters A, 147 (1990) 287-291.
12. N.A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Letters A, 155 (1991) 269-275.
13. S.Liu, Z.Fu, S.D. Liu and Q.Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Letters A, 289 (2001) 69-74.
14. D. Lu, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos, Solitons and Fractals, 24 (2005) 1373-1385.
15. M.R.Miura, Backlund Transformation,Springer-Verlag, Berlin,1978.
16. C.Rogers and W.F.Shadwick, Backlund Transformations, Academic Press, New York, 1982.
17. Z.Wang and H.Q.Zhang, A new generalized Riccati equation rational expansion method to a class of nonlinear evolution equation with nonlinear terms of any order, Appl.Math.Comput, 186 (2007) 693-704.
18. M.Wang and Y.Zhou,The periodic wave equations for the Klein-Gordon-Schordinger equations, Phys. Letters A, 318 (2003) 84-92 .
19. M.Wang and X. Li, Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Letters A, 343 (2005) 48-54 .
20. M.Wang and X.Li, Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation,Chaos, Solitons and Fractals 24 (2005) 1257-1268.
21. M.L.Wang, X.Z.Li and J.L.Zhang, Sub-ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation, Phys. Letters A, 363 (2007) 96-101.
22. D.S.Wang, Y.J.Ren and H.Q.Zhang, Further extended sinh-cosh and sin-cos methods and new non traveling wave solutions of the ($2+1$)-dimensional dispersive long wave equations, Appl. Math.E-Notes, 5 (2005) 157-163.
23. M.Wang, X.Li and J.Zhang, The $\left(\frac{G^{\prime}}{G}\right)$ - expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys.Letters A, 372 (2008) 417423.
24. Z.Wang and H.Q.Zhang, Many new kinds exact solutions to (2+1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation, Appl. Math. Comput. 186 (2007) 693-704.
25. A.M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation, Appl. Math. Comput., 169 (2005) 713-725.
26. A.M. Wazwaz, New solutions of distinct physical structures to high - dimensional nonlinear evolution equations, Appl. Math. Comput., 196 (2008) 363-368.
27. J.Weiss, M.Tabor and G.Garnevalle, The Painleve property for partial differential equations, J.Math.Phys. 24 (1983) 522-526.
28. G. Xu, An elliptic equation method and its applications in nonlinear evolution equations, Chaos, Solitons and Fractals, 29 (2006) 942-947.
29. Z.Yan, Abundant families of Jacobi elliptic functions of the (2+1)-dimensional integrable Davey-Stawartson-type equation via a new method,Chaos,Solitons and Fractals, 18 (2003) 299-309.
30. E.Yomba, The extended Fan's sub-equation method and its application to KdV-mKdV, BKK and variant Boussinesq equations, Phys. Letters A, 336 (2005) 463-476.
31. E.Yusufoglu, New solitary solutions for the MBBM equations using Exp-function method, Phys. Letters A, 372 (2008) 442-446.
32. E.Yusufoglu and A.Bekir, Exact solution of coupled nonlinear evolution equations, Chaos, Solitons and Fractals, 37 (2008) 842-848.
33. E.M.E.Zayed, H.A. Zedan and K.A.Gepreel, On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV equations, Chaos,Solitons and Fractals, 22 (2004) 285-303.
34. E.M.E.Zayed, H.A.Zedan and K.A.Gepreel, Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int.J.nonlinear Sci. and Nume.Simul. 5 (2004) 221-234.
35. E.M.E.Zayed and K.A.Gepreel, The $\left(\frac{G^{\prime}}{G}\right)$ - expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics, J. Math. Phys., 50 (2009) 013502013513.
36. E.M.E.Zayed, The $\left(\frac{G^{\prime}}{G}\right)$ - expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Computing, 30 (2009) 89-103.
37. E.M.E.Zayed, New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized $\left(\frac{G^{\prime}}{G}\right)$ - expansion method, J.Phys. A: Math.Theoretical., 42 (2009) 195202-195214.
38. S.L.Zhang, B. Wu and S.Y.Lou, Painlevé analysis and special solutions of generalized Broer-Kaup equations, Phys. Lett. A, 300 (2002) 40-48.
39. S. Zhang, Application of Exp-function method to higher dimensional nonlinear evolution equation, Chaos, Solitons and Fractals 38 (2008) 270-276.
40. S. Zhang, Application of Exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer- Kaup- Kupershmidt equations, Phys. Letters A, 372 (2008)1873-1880.
41. S. Zhang and T.C. Xia, A further improved tanh-function method exactly solving the (2+1)-dimensional dispersive long wave equations, Appl.Math.E-Notes, 8 (2008) 58-66.
42. S. Zhang and T.C. Xia, Symbolic computation and new families of exact non-traveling wave solutions to (3+1)- dimensional Kadomtsev- Petviashvili equation, Appl.Math. Comput., 181 (2006) 319-331.
43. S. Zhang and T.C.Xia, A further improved extended Fan sub-equation method and its application to the $(3+1)$ - dimensional Kadomstov- Petviashvili equatrion, Phys. Letters A, 356 (2006) 119-123.
44. S.Zhang, J.Tong and W.Wang, A generalized $\left(\frac{G^{\prime}}{G}\right)$ - expansion method for the mKdV equation with variable coefficients, Phys.Letters A, 372 (2008) 2254-2257.
45. J. Zhang, X.Wei and Y.Lu, A generalized $\left(\frac{G^{\prime}}{G}\right)$ - expansion method and its applications, Phys.Letters A, 372 (2008) 3653-3658.
46. S.D.Zheng, T.C.Xia and H.Q.Zhang, New exact traveling wave solutions for compound KdV-Burgers equations in mathematical physics, Appl. Math.E-Notes. 2 (2002) 45-50

E.M.E. Zayed

Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
e-mail: e.m.e.zayed@hotmail.com

[^0]: Received January 24, 2010. Accepted August 31, 2010.
 (C) 2011 Korean SIGCAM and KSCAM.

