• 제목/요약/키워드: Fuzzy-Sliding Mode Control

검색결과 220건 처리시간 0.026초

압전 작동기를 갖는 2 링크 유연 매니퓰레이터의 힘 및 위치 제어 (Force and Position Control of a Two-Link Flexible Manipulator with Piezoelectric Actuators)

  • 김형규;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.428-433
    • /
    • 1997
  • This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible beam is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation(SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the stability of the system. A set of fuzzy parameters and control rules are obtained from a relation between estimated perturbation and actual perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate force and position control of a two-link flexible manipulator are achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

브러시리스 DC 모터의 적응퍼지 슬라이딩 모드 제어 (Adaptive Fuzzy Sliding Mode Control of Brushless DC Motor)

  • 이종호;김성태;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.647-649
    • /
    • 2000
  • Brushless DC motors are widely used in many industrial fields as an actuator of robot and driving power motors of electrical vehicle. In this paper adaptive fuzzy sliding mode scheme is developed for velocity control of brushless DC motor. The proposed scheme does not require an accurate dynamic model. yet it guarantees asymptotic trajectory tracking despite torque variations. Numerical simulation and DSP-based experimental works for velocity control of brushless DC motor are carried out.

  • PDF

로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발 (The development of generating reference trajectory algorithm for robot manipulator)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF

A Time-Varying Sliding Mode for Robotic Manipulators

  • Lee, Sung-Young;Jeon, Hae-Jin;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.61.2-61
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Dynamics of robotic manipulator $\textbullet$ Time-varying sliding surface $\textbullet$ Fuzzy rule, Membership function $\textbullet$ Application to a two degree robotic manipulator $\textbullet$ Conclusion

  • PDF

MR 댐퍼를 장착한 상용차 시트 서스팬션의 승차감 평가 (Ride Comfort Evaluation of Seat Suspension of Commercial Vehicle with MR Damper)

  • 신도균;도쑤웬푸;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.32-33
    • /
    • 2014
  • This paper presents control performances of a seat suspension system equipped with magnetorheological (MR) dampers using a new adaptive fuzzy sliding mode controller (FSMC). Adaptive fuzzy controller is formulated by considering the acceleration of the seat. It has been demonstrated that the proposed seat suspension system realized by the adaptive fuzzy sliding mode controller can provide effective performances such as reduced vibration.

  • PDF

마찰을 고려한 버터플라이 밸브의 강인 제어기 설계 (Design of a Robust Controller for the Butterfly Valve with Considering the Friction)

  • 최정주
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

TSK-type 시간 지연 퍼지 제어기의 강인한 안정성 (Robust Stability of TSK-type Time-Delay FLC)

  • 명환춘;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.4-7
    • /
    • 2001
  • A stable TSK-type FLC can be designed by the method of Parallel Distributed Compensation (PDC), but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK-type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller basaed upon an integral sliding surface.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기 (The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System)

  • 장욱;권오국;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF