Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.5.633

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers  

Eliasi, Hussein (Department of Electrical and Computer Engineering, University of Birjand)
Yazdani, Hessam (Department of Civil and Environmental Engineering, Howard University)
Khatibinia, Mohsen (Department of Civil Engineering, University of Birjand)
Mahmoudi, Mehdi (Department of Civil Engineering, Khayyam University)
Publication Information
Structural Engineering and Mechanics / v.81, no.5, 2022 , pp. 633-645 More about this Journal
Abstract
The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.
Keywords
active tuned mass dampers; nonlinear control; optimum design; sliding mode control; structural control;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3.   DOI
2 Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9.   DOI
3 Soto, M.G. and Adeli, H. (2013), "Tuned mass dampers", Arch. Comput. Meth. Eng., 20(4), 419-431.   DOI
4 Tajimi, H. (1960), "Statistical method of determining the maximum response of a building structure during an earthquake", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan.
5 Utkin, V. and Lee, H. (2006), "Chattering problem in sliding mode control systems", International Workshop on Variable Structure Systems, Alghero, Sardinia, Italy.
6 Wang, A.P. and Lin, Y.H. (2007), "Vibration control of a tall building subjected to earthquake excitation", J. Sound. Vib., 299(4-5), 757-773. https://doi.org/10.1016/j.jsv.2006.07.016.   DOI
7 Zare, A.R. and Ahmadizadeh, M. (2018), "Modified sliding mode design of passive viscous fluid control systems for nonlinear structures", Eng. Struct., 162, 245-256. https://doi.org/10.1016/j.engstruct.2018.02.042.   DOI
8 Shayesteh Bilondi, M.R., Yazdani, H. and Khatibinia, M. (2018), "Seismic energy dissipation-based optimum design of tuned mass dampers", Struct. Multidisc. Optim., 58(6), 2517-2531. https://doi.org/10.1007/s00158-018-2033-0.   DOI
9 Khatibinia, M., Mahmoudi, M. and Eliasi, H. (2020), "Optimal sliding mode control for seismic control of buildings equipped with ATMD", Inter. J. Optim. Civil. Eng., 10(1), 1-15.
10 Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Vol. IV, Perth, Australia.
11 Mongkol, J., Bhartia, B.K. and Fujino, Y. (1996), "On linear-saturation (LS) control of buildings", Earthq. Eng. Structl. Dyn., 25(12), 1353-1371. https://doi.org/10.1002/(SICI)1096-9845(199612)25:12<1353::AID-EQE614>3.0.CO;2-2.   DOI
12 Lavan, O. (2017), "Multi-objective optimal design of tuned mass dampers", Struct. Control. Health. Monit., 24(11), e2008. ttps://doi.org/10.1002/stc.2008.   DOI
13 Li, Q.S., Liu, D.K., Tang, J., Zhang, N. and Tam, C.M. (2004), "Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms", J. Sound. Vib., 270(4-5), 611-624. https://doi.org/10.1016/S0022-460X(03)00130-5.   DOI
14 Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound. Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.   DOI
15 Khatibinia, M., Jalalipour, M. and Gharehbaghi, S. (2019), "Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach", Eng. Struct., 197, 108874. https://doi.org/10.1016/j.engstruct.2019.02.005.   DOI
16 Alli, H. and Yakut, O. (2007), "Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures", Struct. Eng. Mech., 26(5), 517-544. https://doi.org/10.12989/sem.2007.26.5.517.   DOI
17 Adhikari, R . and Yamaguchi, H. (1997), "Sliding mode control of buildings with ATMD", Earthq. Eng. Struct. Dyn., 26(4), 409-422. https://doi.org/10.1002/(SICI)1096- 9845(199704)26:4<409::AID-EQE647>3.0.CO;2-0.   DOI
18 Aguirre, N., Ikhouane, F. and Rodellar, J. (2011), "Proportional-plus-integral semiactive control using magnetorheological dampers", J. Sound. Vib., 330(10), 2185-2200. https://doi.org/10.1016/j.jsv.2010.11.027.   DOI
19 Albertos, P., Sala, A. and Olivares, M. (1998), "Fuzzy logic controllers. Advantages and drawbacks", VIII international Congress of Automatic Control, Vol. 3, Laxenburg, Austria, September.
20 Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Hlth. Monit., 25(2), e2066. https://doi.org/10.1002/stc.2066.   DOI
21 Bryson, A.E. (2018), Applied Optimal Control: Optimization, Estimation and Control, Routledge.
22 Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2.   DOI
23 Palazzo, B. and Petti, L. (1999), "Optimal structural control in the frequency domain: control in norm H2 and H∞", J. Struct. Control, 6(2), 205-221. https://doi.org/10.1002/stc.4300060202.   DOI
24 Edwards, C. and Spurgeon, S. (1998), Sliding Mode Control: Theory and Applications, Taylor & Francis, New York.
25 Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992), "Active tuned mass damper", Smart. Mater. Struct., 1(4), 306.   DOI
26 Etedali, S. and Mollayi, N. (2018), "Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers", Int. J. Struct. Stab. Dyn., 18(02), 1850028. https://doi.org/10.1142/S0219455418500281.   DOI
27 Etedali, S., Sohrabi, M.R. and Tavakoli, S. (2013), "Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers", Earthq. Eng. Eng. Vib., 12(1), 39-54. https://doi.org/10.1007/s11803-013-0150-8.   DOI
28 Hudson, E.J., Reynolds, P. and Nyawako, D.S. (2016), "Fundamental studies of AVC with actuator dynamics", Eds. Allen, M., Mayes, R.L., Rixen, D., Dynamics of Coupled Structures, Volume 4, Springer International Publishing.
29 Zamani, A.A., Tavakoli, S. and Etedali, S. (2017), "Control of piezoelectric friction dampers in smart base-isolated structures using self-tuning and adaptive fuzzy proportional-derivative controllers", J. Intel. Mater. Syst. Struct., 28(10), 1287-1302. https://doi.org/10.1177/1045389X16667561.   DOI
30 Etedali, S., Tavakoli, S. and Sohrabi, M.R. (2016), "Design of a decoupled PID controller via MOCS for seismic control of smart structures", Earthq. Struct., 10(5), 1067-1087. https://doi.org/10.12989/eas.2016.10.5.1067.   DOI
31 Park, S.J., Lee, J., Jung, H.J., Jang, D.D. and Kim, S.D. (2009), "Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use", Wind. Struct., 12(4), 313-332. https://doi.org/10.12989/was.2009.12.4.313.   DOI
32 Phu, D.X., Mien, V., Tu, Ph.H.T., Nguyen, N.Ph. and Choi, S.B. (2020), "A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control", J. Sound. Vib., 485, 115542. https://doi.org/10.1016/j.jsv.2020.115542.   DOI
33 Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.   DOI
34 Pusadkar, U.S., Chaudhari, S.D., Shendge, P.D. and Phadke, S.B. (2019), "Linear disturbance observer based sliding mode control for active suspension systems with non-ideal actuator", J. Sound. Vib., 442, 428-444. https://doi.org/10.1016/j.jsv.2018.11.003.   DOI
35 Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control., 21(5), 919-937. https://doi.org/10.1177/1077546313478294.   DOI
36 Brown, A.S., Ankireddi, S. and Yang, H.T. (1999), "Actuator and sensor placement for multiobjective control of structures", J. Struct. Eng., 125(7), 757-765. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:7(757).   DOI
37 Chen, Sh., Wang, J.Ch., Yao, M. and Kim, Y.B. (2017), "Improved optimal sliding mode control for a non-linear vehicle active suspension system", J. Sound. Vib., 395, 1-25. https://doi.org/10.1016/j.jsv.2017.02.017.   DOI
38 Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., 69(3), 307-315. https://doi.org/10.12989/sem.2019.69.3.307.   DOI
39 Alavinasab, A., Moharrami, H. and Khajepour, A. (2006), "Active control of structures using energy-based LQR method", Comput-Aid. Civil Infrastr. Eng., 21(8), 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.   DOI
40 Ankireddi, S. and Yang, H.T. (1996), "Simple ATMD control methodology for tall buildings subject to wind loads", J. Struct. Eng., 122(1), 83-91. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(83).   DOI
41 Chang, C.C. and Yang, H.T. (1995), "Control of buildings using active tuned mass dampers", J. Eng. Mech., 121(3), 355-366. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(355).   DOI
42 Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.   DOI
43 Etedali, S., Zamani, A.A. and Tavakoli, S. (2018), "A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures", Autom. Constr., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.   DOI
44 He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004), "A particle swarm optimizer with passive congregation", Biosyst., 78(1-3), 135-147. https://doi.org/10.1016/j.biosystems.2004.08.003.   DOI
45 Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control. Hlth. Monit., 25(2), e2082. https://doi.org/10.1002/stc.2082.   DOI
46 Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), May.
47 Utkin, V. (1997), "Variable structure systems with sliding modes", IEEE. Tran. Automat. Control, 22(2), 212-222. https://doi.org/10.1109/TAC.1977.1101446.   DOI
48 Yang, J.N., Wu, J.C. and Li, Z. (1996), "Control of seismic-excited buildings using active variable stiffness systems", Eng. Struct., 18(8), 589-596. https://doi.org/10.1016/0141-0296(95)00175-1.   DOI
49 Reyes-Salazar, R., Bojorquez, E., Bojorquez, J., Llanes-Tizoc, M.D., Gaxiola-Camacho, G.R. and Valenzuela-Beltran, F. (2021), "Some issues regarding the models of the mass and damping matrices in nonlinear seismic analysis of moment resisting steel frames", Struct., 33, 12-27. https://doi.org/10.1016/j.istruc.2021.04.043.   DOI
50 Huang, Y., Deng, Z. and Li, W. (2007), "Sliding mode control based on neural network for the vibration reduction of flexible structures", Struct. Eng. Mech., 26(4), 377-392. https://doi.org/10.12989/sem.2007.26.4.377.   DOI
51 Kanai K. (1961), "An empirical formula for the spectrum of strong earthquake motions", Bull. Earthq. Res. Institute., 39(1), 85-95.
52 Huang, Z., Hua, X., Chen, Z. and Niu, H. (2019), "Optimal design of TVMD with linear and nonlinear viscous damping for SDOF systems subjected to harmonic excitation", Struct. Control. Heth. Monit., 26(10), e2413. https://doi.org/10.1002/stc.2413.   DOI
53 Ikeda, Y. (2009), "Active and semi-active vibration control of buildings in Japan-Practical applications and verification", Struct. Control. Health. Monit., 16(7-8), 703-723. https://doi.org/10.1002/stc.315.   DOI
54 Zhao, B., Lu, X., Wu, M. and Mei, Z. (2000), "Sliding mode control of buildings with base-isolation hybrid protective system", Earthq. Eng. Struct. Dyn., 29(3), 315-326. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<315::AID-EQE906>3.0.CO;2-A.   DOI
55 Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart. Mater. Struct., 17(1), 015021.   DOI