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Abstract - This paper addresses analysis and design of a fuzzy
model-based-controller for the control of uncertain SISO
nonlinear systems. In the design procedure, we represent the
nonlinear system by using a Takagi-Sugeno fuzzy model and
construct a global fuzzy logic controller via parallel distributed
compensation and sliding mode control. Unlike other parallel
distributed controllers, this globally stable fuzzy controller is
designed without finding a common positive definite matrix for
a set of Lyapunov equations, and has good tracking performance.
Furthermore, stability analysis is conducted not for the fuzzy
mode! but for the real underlying nonlinear system. A
simulation is included for the control of the Duffing forced-
oscillation system, to show the effectiveness and feasibility "of
the proposed fuzzy control method.

1. Introduction

A systematic analysis and design procedures of the fuzzy
control system has been difficult since they are essentially
nonlinear. In this paper, stability analysis and design of the
Takagai-Sugeno (TS) fuzzy model-based-control system for
uncertain SISO nonlinear systems are presented. On the basis of
the TS fuzzy model, some fuzzy-model-based controls have
been investigated in the literature [1-4]. Sometimes, they are
called parallel distributed compensation (PDC). These kinds of

design approaches suffer from a few limitations: 1) A common

positive definite matrix must be found to satisfy a set of
Lyapunov equations, which is difficult especially when the
number of fuzzy rules required 1o give a good plant model is
large. 2) The performance of the closed-loop system is difficult
to predict. 3) The stability is guaranteed only for the simplified
TS fuzzy models although they have been successfully applied
to the original, underlying nonlinear systems. 4) The tracking
problem of nonlinear systems is not easy to discuss.

In [5] authors presented a new kind of TS fuzzy model-based-
controller for known SISO nonlinear system. In this paper, we
extend the result of the above approach to the control of
uncertain 81SO nonlinear systems. Interesting readers can refer
to [5] for more detailed explanation. A simulation is included
for the control of the Duffing forced-oscillation system, to show
the effectiveness and feasibility of the proposed fuzzy control
method.

o

2. TS Fuzzy Model

Consider a class of uncertain SISO nonlinear dynamic
systems :

x" = f(x)+g(X)u m

where the scalar x is the output state variable of interest, the

scalar  is the system control input, and x = [x x X ]7
is the state vector. In equation (1), Ax) is a unknown nonlinear
continuous function of x, and similarly, the control gain g(x) is
a unknown nonlinear continuous and invertible function of x.
This SISO nonlinear system can be approximated by the TS
fuzzy model, proposed in [1], which combines the fuzzy
inference rule and the local linear state model [2-4]. The ith rule
of the TS fuzzy model, representing a complex single input
single output {SISO) system (1), is the following:

and x" (1) is F!
(2)

PlantRulei: IFx{:)is F and...
THEN () = A,x(t)+b,u(t) *

(i=1,2,..,1

where Rule i denotes the ith fuzzy inference rule, F; (j=1,2,

., 1) are fuzzy sets, x(1)€ R” is the state vector, u(t)e R' is

the input comrol, A, € R™", B, e R"', r is the number of
fuzzy IF-THEN rules

By using the fuzzy inference method with a smgleton fuzzifier,
product mference and center average defuzzifier, the dynamic
fuzzy model (2) can be expressed as the following global
model:

i w,(X(OXA X(1) + Bu(1))

x(r) = ~
; w, (x(1))

= i);«(x(x»(&x(r) +B,u(r)
= AQEMX() + BGOM()

where
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w, (x(1)) = ﬁ Fi(xU™ ()

W, ()
S, (x(0)
H(x(1) —(/J,(X(t)),ﬂ:(X(l)),

H#,(x() =

ey i1, (X))

and F](x"™"(1)) is the grade of membership of x"™(1) in

F;.1tis assumed, as usual, that

w,(x()20,(=1,2, ....r5, Sw,(x({t)>0
i=1
for all 1. Therefore,
w(E)20,(=1,2, ..., Spu(x)=1
i=]

for all r. For simplicity of notation, let
po= 1, (), and = p(x(0) .

w, = w(x(r)),

Definition 1: Model (3) is called the global state-space model of
the fuzzy system (2). If the pairs (A, B), i =1, 2, ..., r are
controllable, the fuzzy system (2) is called locally controllable.

3. Robust TS fuzzy model-based-controller
First, Let us define controller rule as (4).

Controller Rule 72 If x, is F;, and ... and x, is F;,
THEN u=-Kx+Lr (4)
(i=1,2,..,¥5

where L, and r are scalar values. The scalar input r will be
determined later. Equation (4) can be rewritten as

Er:w, (-K,x+r)
=t =_SvKx+r S
Tw, =

r
where v, =w, /2w,
i=1

the feedback imerconnection of the nonlinear system (1) and the
controller (5) and can be described by the following equation:

. The closed-loop system is obtained from

x = F(x)+g(x)r (6)
where  F(x) = f(x)- g(x)iv,K,x
i=l

In order to proceed, we have to make the following
assumption.

Assumption 1. We can determine function f'(x), g"(x),
and g, (x) such  that )€ U (%) and
0<g,(x)<g(x)<g"(x).

Basedon fU(x), g'(x),and g,(x),and observing (6), the
upper bound function of F(x) can be easily obtained.

| FOH S (x) = g5V K x|
™
SfU+g% 1EvK xl=FY(x)

Let ¥ =x-x, be the tracking error in the variable x, and let

ey @®)

X=x-x,=[¥

In order to incorporate sliding mode control theory into the
fuzzy model based control architecture, we first define a time-

varying surface S(s) in the state-space R” by the scalar
equation s(x;1)=0, where

-2)

s(x;t):(-;i+/l)""? ="+ aX" V4 va, ¥ )
t

where A is a strictly positive constant.
Given an initial condition, the problem of tracking n
dimensional vector x, can be reduced to that of keeping the

scalar quantity s at zero. More precisely, nth order tracking
problem in x can be replaced by a 1* order stabilization problem
in s [6].

The simplified, 1¥ order problem of keeping the scalar s at zero
can now be achieved by choosing the control law such that
outside of S(7)

d r
—s's<-nls (10)
" nls|

Differentiating s(x;t) with respect to time, we obtain

§=F(x)+g(x)r,
F(x) = Fx)=x +aX" ™ 4.+ a, X an

Since F(x)and g(x) are unknown; only their bounds can be
used to construct . In this case, the control law » is chosen to be

r=-g;'{Qsgn(s) - Ks} (12)
where
O=[FY+x{" —ax"" ~....—a, X]

Substituting (12) into (11), we have

§=
F —{gg;'[F’ +{x"') ax"' —. ..~a,, ‘]}son(s) gg;'Ks
(13)

s's=5"F

—s"{gg;'lFV + ‘ x4 g X" - - a,_X|}sgn(s)}

-s gg,'_ Ks
< —s"gg;'Ks (14)
+|s|F]

~|s"|tggi'(F! + [ o _ X - a, X1}

<-s"gg;'Ks <0
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Therefore the close loop fuzzy system (6) is asympiotically
stable. The results are summarized in the following theorem.
Theorem 1: If the dynamic fuzzy model described in (1) is
locally controllable, then the -closed-loop fuzzy system
described in (6), with control law (12), is asymptotically stable.
Note that the controllability condition in Definition 1 is only
required for the design of local compenstors in each rule.

4. Application to the Duffing forced-oscillation system

To illustrate the proposed method, we study the control of the
Duffing forced oscillation system. The dynamic equations of the
system are [7}]:

X =x,
. s (15)

xy =—0.1x, = x) +12cos(t) +u(s)
The above system is chaotic without control. The trajectory of
the system with u(r) = 0 is shown in the phase plane in Figure 6
for the initial condition x(0)=[2 2]”

to t, =20. We now use the proposed controller to control the

and time period ¢, =0

system state x, 10 track the reference trajectory y,(O)=sin(r). The
fuzzy model for this chaotic system can also be obtained by
linearizing the nonlinear equations over a number of operating
points in the phase plane of (x,,x,). The following fuzzy

model has been obtianed.

Plant Rule:
Rule I: IF x, is about 0, THEN %= A x+Bu

Rule 2: IF x, isabout +2, THEN x = A,x+B.u
Rule 3: IF x, is about +4, THEN %= A.x+B.u

0 1
A = ,
[o —OJ
0 i 0

Az - N B, =
[—12 -0.1} : H
0 I 0

A| = . B. =
{—48 -OJ : H

The membership functions for x, are chosen as in Figure 1.
The rules of the new fuzzy-model-based controller are:

Where

Controller Rule:
Rule 1: IF x, is about 0, THEN w = -K,x+u,

Rule 2: IF x, is about 2, THEN w=-K x+u,
Rule 3: IF x, isabout +4, THEN u=-K x+u,

The desired closed loop poles for each local model are chosen
as —2 and 2. Thus the feedback control gains are found as:

K= [4 39]
K.= [8 39]
K, = [«44 39]

We choose K=10. A1=5, g'=g, =1, f" =12+|x, .
The simulation results are shown in Figure 2 to illustrate the
feasibility and effectiveness of the proposed method. Figure 2

(a) shows the state x,(r) and it desired value y,(f)=sin(r) and
Figure 2 (b) shows the state x.s) and its desired value

V(1) =cos(t).

y Ruled Rule 2 Rule 1 Rule 2 Rule 3

-4 -2 [} 2 4

Figure 1. Membership functions of state x,

(a) ®)
Figure. 2 Closed loop system trajectories of (a) x,(¢) and (b) x.()

5. Conclusion

In this paper, we propose a stable fuzzy logic controller
architecture for an uncertain SISO nonlinear system. In the’
design procedure, we represent the fuzzy system as a family of
local state space models, which is often called Takagi Sugeno
fuzzy model and construct a global fuzzy logic controller by
considering each local state feedback controller. Unlike other
conventional methods, we incorporate the sliding mode control
theory into the PDC approach to obtain robust tracking
performance without finding common positive definite matrix P.
Finally, Simulation is performed to control the Duffing forced-
oscillation system to show the effectiveness and feasibility of
the proposed fuzzy controller.
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