• Title/Summary/Keyword: Fuzzy-Set

Search Result 1,491, Processing Time 0.029 seconds

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

INTUITIONISTIC FUZZY EQUIVALENCE RELATIONS

  • HUR, KUL;JANG, SU YOUN;AHN, YOUNG SIN
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.163-181
    • /
    • 2005
  • We study some properties of intuitionistic fuzzy equivalence relations. Also we introduce the concepts of intuitionistic fuzzy transitive closures and level sets of an intuitionistic fuzzy relation and we investigate some of their properties.

  • PDF

Operations on Generalized Intuitionistic Fuzzy Soft Sets

  • Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.184-189
    • /
    • 2011
  • Generalized intuitionistic fuzzy soft set theory, proposed by Park et al. [Journal of Korean Institute of Intelligent Systems 21(3) (2011) 389-394], has been regarded as an effective mathematical tool to deal with uncertainties. In this paper, we prove that certain De Margan's law hold in generalized intuitionistic fuzzy soft set theory with respect to union and intersection operations on generalized intuitionistic fuzzy soft sets. We discuss the basic properties of operations on generalized intuitionistic fuzzy soft sets such as necessity and possibility. Moreover, we illustrate their interconnections between each other.

GENERALIZED FUZZY NUMBER VALUED BARTLE INTEGRALS

  • Park, Chun-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.37-49
    • /
    • 2010
  • In this paper we introduce the integration of scalar valued functions with respect to a generalized fuzzy number measure which we call the generalized fuzzy number valued Bartle integral. We first establish some properties of the generalized fuzzy number measures and then study the generalized fuzzy number valued Bartle integrals.

([r, s], [t, u])-INTERVAL-VALUED INTUITIONISTIC FUZZY GENERALIZED PRECONTINUOUS MAPPINGS

  • Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • In this paper, we introduce the concepts of ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed sets and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen sets in the interval-valued intuitionistic smooth topological space and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized pre-continuous mappings and then investigate some of their properties.

INTUITIONISTIC FUZZY (t, s)-CONGRUENCES

  • Ahn Tae-Chon;Hur Kul;Roh Seok-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.357-366
    • /
    • 2006
  • We introduce the notion of intuitionistic fuzzy (t, s)-congruences on a lattice and study some of its properties. Moreover, we obtain some properties of intuitionistic fuzzy congruences on the direct product of two lattices. Finally, we prove that the set of all intuitionistic fuzzy congruences on a lattice forms a distributive lattice.

Some generalized weak vector quasivariational-like inequalities for fuzzy mappings

  • Lee Byung-Soo;Cho Hyun-Duk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • Some Stampacchia type of generalized weak vector quasivariational-like inequalities for fuzzy mappings was introduced and the existence of solutions to them under non-compact assumption was considered using the particular form of the generalized Ky Fan's section theorem due to Park [15]. As a corollary, Stampacchia type of generalized vector quasivariational-like inequalities for fuzzy mappings was studied under compact assumption using Ky Fan's section theorem [7].

Structures of Fuzzy Relations

  • Min, K.C
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.17-21
    • /
    • 1992
  • In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set. For a complete Heyting algebra L. the category set(L) of all L-fuzzy sets is shown to be a bireflective subcategory of the category Rel(L) of all L-fuzzy relations and L-fuzzy relation preserving maps. We investigate categorical structures of subcategories of Rel(L) in view of quasitopos. Among those categories, we include the category L-fuzzy similarity relations with respect to both max-min and max-product compositions, respectively, as a cartesian closed topological category. Moreover, we describe exponential objects explicitly in terms of function space.

  • PDF

Implemented Circuits of Fuzzy Inference Engine for Servo Control by using Decomposition of $\alpha$-Level Set ($\alpha$-레벨 집합 분해에 의한 서보제어용 퍼지추론 연산회로 구현)

  • Hong Jeng-pyo;Hong Soon-ill
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.90-96
    • /
    • 2005
  • This paper presents hardware scheme of fuzzy inference engine, based on α-level set decomposition of fuzzy sets for fuzzy control of DC servo system. We propose a method which is directly converted to PWM actuating signal by a one body of fuzzy inference and defuzzification. The influence of quantity α-levels on input/output characteristics of fuzzy controller and output response of DC servo system is investigated. It is concluded that quantity α-cut 4 give a sufficient result for fuzzy control performance of DC servo system. The experimental results shows that the proposed hardware method is effective for practical applications of DC servo system.