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Abstract

In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set.
For a complete Heyting algebra L. the category Set(L) of all L-fuzzy sets is shown to be a
bireflective subcategory of the category Rel(L) of all L-fuzzy relations and L-fuzzy relation
preserving maps. We investigate categorical structures of subcategories of Rel(L) in view of
quasitopos. Among those categories, we include the category L-fuzzy similarity relations with
respect to both max-min and max-product compositions, respectively, as a cartesian closed
topological category. Moreover, we describe exponential objects explicitly in terms of function

space.

1. Introduction

Fuzzy relations are essential tools in many applications of fuzzy sets. Therefore, the study of
fuzzy relations has its own value in both mathematical and applicational point of view. Over
the last 25 years, many researchers have studied structure of fuzzy sets in a categorical point
of view to expose the relationship between fuzzy mathematics and topoi with a view to make a
true “fuzzy logic” both consistent, complete and respectable [2-8,12,13].

In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set
and study structures of fuzzy relations in a categorical viewpoint. For a complete Heyting al-
gebra L, we denote the category of all L-fuzzy sets defined by Goguen [6} by Set(L). It is shown
that Set (L) is a bireflective subcategory of the category Rel (L) of all L-fuzzy relations and L-fuzzy
relation preserving maps. We investigate subcategories of Rel(L) in view of quasitopos [9].
Amorg those categories, we include L-fuzzy similarity relations with respect to both max-min
and max-product compositions. Moreover. we describe exponential objects explicitly in terms of

function space. For categorical background. we refer to [1].

2. Fuzzy sets and fuzzy relations

Let L, be a complete Heyting algebra. A category Set (L) [6] is defined by L-fuzzy sets (X,u) and
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functions f: (X, g) - {Y.v) such that g<v e {. In a categorical point of view. this category Sef (L)
has long been studied and justified in many ways [2.8,12.13]. In a similar way now we form a
category Rel (L) as follows:objects are the palr (X,R). where X is a set and R s a function from
XX X into L. i.e. an L fuzzy relation on X and morphisms are functions f:(X.R)—(Y.S) such
that R< S o[ In this case { is called an Lfuzzy relation preserving map.

Given an L fuzzy set (X, ). we define an Liuzzy relation R, (x.x') = plx) A p(x). Let E be a
functor from Set (L) into Rel (L) defined by E{X p) = (X.R,) and EiD={. Then it is easy to that
check E s a full embedding functor. Hence we may consider Sei (L) as a subcategory of Rel (L).
Moreover, we have the following result.

Theorem 2.1. Ge1(1.) 18 a bireflective subcategory of Rel(L).
Proof. Glven an L-fuzzy relation (X.R). we have an LAfuzzy set pul(x) = ( \,Xx Hix.y) V(},,’/x Htlv.x))
on X. In fact. {idx. (X px)} 18 a reflection of (X.R).

3. The category p.j¢L:

We recall some results on hasic structures of L-fuzzy refations from {10}, Constder the under
lying functor U:Rel (L) Set defined by UIX.R) = X and U] = 1.
Theorem 3.1.{10] The functor U s topological over Sef.
Proot. et X be a set and {i: X~ (X, R) 1 a family of functions. Then R(x.\) = | ‘1 R Ix).6(0) give
an initial L-fuzzy relation on X with respect to i fi.
Remark. Given a family | fi: (X, R+ X 1. the final L fuzzy relation R on X is obtalned from the
formula Rix.v) = " (a.b) & ( fxr) xy) Rilab),
Theorem 3.2.[10) In Rel(L). final epl-sinks are preserved by pull backs.
Remark. we note that the category Rel (L) Is not a topos. since a bimorphism is not necessarily
an isomorphism. Even though a singleton have more than one structure and hence constant
map is not necessarily a morphism. it 1s shown [10] that Rel (L) is cartesian closed by a modift
catlon of [2]:For (X.R.IY.S) € Rel(L). let C{X.Y) be the set of morphisms from (X.R) into (Y.S).
Then T(f.g)= Vi ia € LIRXX) AN a < SHix).gx) for all x.x' € X! gives an L-fuzzy relation on C(X.
Y) allowing Rel (L) to be cartesian closed.
Theorem 3.3.(10} Rel (1) is cartesian closed.

4. Subcategories of eyl

An Lfuzzy relation R on X is reflexive if R(x.x)=1 for all x€ X. Let Relx(L) be the subcategory
of Rel (L) formed by all reflexive L fuzzy relations. By the formulas of initial and final structures
in Rel(L). it Is easy to see that Reli{l) is closed under the formation of initial sources and
final-epi-sinks in Rel (L), respectively. Hence Rely (L) is 4 bilcolreflective subxategory of Rel (L) In
fact. given (X.R)& Rel(L). let R* be the function defined by R*(x.v)=R(x.v) if x#v. and R*(x.x)=1
for all x€ X. Then (i.(X.R*}} is a reflection of {X.R). Moreover. initial and final structures in Rel
k(L) can be obtained from Rel(l) using reflections. We note that every singleton has a unique

structure in Reli (L) and hence every constant map is a morphism.
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By some modiﬁcaﬁoﬁ‘of the proof of Theorem 3. 2., {t {s shown that
Theorem 4.1 {10} In Relw(L). final episinks are preserved by pull-backs and hence Rely (L) is a A
quasilopos. ' .

Remark. As a (orollary the category Rel (L) is cartestan closed (cf. [11]). However the cartesian
closcdness of Relr (L) 1s shown directly by the L-fuzzy relation on &' function space CIX.Y) in e
mark 2. 2. Moreover. in the case of a chain L. we can obtain an internal description of the
bfu/rv re!ﬁtlon T on CIX.Y) as.Tollows: For fEECIX.YL let DI =(x.x) | Rbx.x) > Sfix).fx).
Then T(.@=1. if DIL.g = ¢. and THE= ¢ xye num SUIXLE(xD), otherwise (¢f. [14]).

Theorem 4.2. Rel+(L) and Rel. (L) are closed under the formation of inttiat sources in Rel (L), re
spectively. ,
Proof. Let ifi:(X. R)— (X,.R it be an Initial source in Rel(L). Suppose each Ri is transitive with’

respect to max- -min tt)mposuion Then = - s

¢
Ro R (x. y) VAR, (x). f\(;r)] ATATRAELZ) T YD) o
< V., Rilfilx), f.tz)} A Rulfil2), fuly)).
< Ri @ Relfi(x), f,lV
< Rilfi(x).fily)

, .
for each {€L Hence R = R(‘c y) < Av Ryl (x). h ) =R(x.y). Therefore R is transitive. By a similar
arguiment. this rcsult hqlds ior maxproduct composition. . ‘
Corollary 4.3. Rely (L) and Rel. (L} are bireflective subcategories of Rel(l,)
Remark. since Relt(L) and Rel, (L) have initial structures, they have final structures, However

PR

they are not closed under the formation of final epl-sinks in Rel(L). Let [{: (X R)-—- X! be 4
family of functons and R the final structure with respect to ! filin Rel (L), Then the transitive
closure R* of R Is the final structure of for the family (i in Relt (L) and Rel. (L), respectively.
Theorem 4.4. Rel+ (L) ts a bireflective subcategory of Rel, (L).

Proof. Since R-RER « R. Rel+(L)E Rel (L), (R-R means the max-product composition,] By The-
orem 4.2.. the result follows,

Let Relem(L) (Relpr(L). resp.) be the subcategory of Rel(L) formed bw all L-fuzzy preorder
relations with respect to max-min {max-product, resp. ) compositions. By the above results, the
categories Rele (L) and Relir (L) are topological and they are bireflective subcategories of Rel (L)
Theorem 4.5. Rele (L) and Relrs (L) are cartesian closed. '

Proot. For (X.R). (Y.S)€ Rel (L), let C(X.Y) be the set of morphisms from (X.R) into (Y.S). Let T(f.g)
=V a€LIREX) A a < S(f(x).g(x) for all x.x € X!. Then clearly T is reflexive.

T TiEg) = VW Tih) A Tth.g
= V[V ie€LIRXX) A a<S(f(x)hix) for all x.x' €X) A
(VA€ LIRyY) AL <S(hiy).gly)) for all vy € X))
£ Vi VI ELIRIXX) ARWY) A€ SHxLh(N)) A
‘ Sihiv).gly ]torallxxex Vy.EX: _ . Dt
W EEETRAN RSN s St
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Slfl(z),g(y)) for all x,y,z€ X}
< V{y€L|RoRI(xy Ay<S o S(f(x),gly) for all x,y€ X}
=V{yeLIRKxy Ay<Sf(x),gly) for all x,y€ X}
=T(f,g)

Hence T is a L-fuzzy preorder relation on C(X,Y). Therefore by the Remark of Theorem 3.2, it is
easy to check that Relem(L) is cartesian closed. Moreover by a similar argument we can show
that Reler (L) is cartesian closed.

Let Relsm(L) (Relse(L), resp.) be the subcategory of Rel (L) formed by all L-similarity relations
with respect to max-min (max-product, resp.) compositions. By the above arguments, it is easy
to see that Relsw (L) and Relsp (L)} are topological and they are bireflective subcategorles of Rel (L).
Moreover using the proof of Theorem 4.5., we obtain the following.

Theorem 4.6. Relsw (L) and Relse(L) are cartesian closed.

Remarks. In the case of a chain L, by a natural modification of the proof in [14], we can show
that the Lfuzzy relation T on C(X.Y) has an internal description, as in Remark of Theorem 4.
2., for both Relsm (L) and Relsp (L).

The categories mentioned above are not topoi, because a bimorphism needs not be an iso-
morphism (cf. [10]). However a question arises whether Relpm (L), Reler (L), Relsu(L), and Relsp(L)
are quasitopoi. In a separate paper we will discuss about this matter and present some results
on structures of L-fuzzy preorder relations, L-similarity relations, L-fuzzy order relations,
L-fuzzy perfect order relations and L-fuzzy total order relations, etc. with respect to s-norms

and t-norms.
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