• Title/Summary/Keyword: Fuzzy Functions

Search Result 940, Processing Time 0.025 seconds

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

An Approach to Identify NARMA Models Based on Fuzzy Basis Functions

  • Kreesuradej, Worapoj;Wiwattanakantang, Chokchai
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1100-1102
    • /
    • 2000
  • Most systems in tile real world are non-linear and can be represented by the non-linear autoregressive moving average (NARMA) model. The extension of fuzzy system for modeling the system that is represented by NARMA model will be proposed in this paper. Here, fuzzy basis function (FBF) is used as fuzzy NARMA(p,q) model. Then, an approach to Identify fuzzy NARMA models based on fuzzy basis functions is proposed. The efficacy of the proposed approach is shown from experimental results.

  • PDF

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

A Neuro-Fuzzy System Reconstructing Nonlinear functions from Chaotic Signals

  • Eguchi, Kei;Ueno, Fumio;Tabata, Toru;Zhu, Hong-Bin;Nagahama, Kaeko
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1021-1024
    • /
    • 2000
  • In this paper, a neuro-fuzzy system for quantitative characterization of chaotic signals is proposed. The proposed system is differ from the previous methods in that the nonlinear functions of the nonlinear dynamical systems are calculated as the invariant factor. In the proposed neuro-fuzzy system, the nonlinear functions are determined by supervised learning. From the reconstructed nonlinear functions, the proposed system can generate extrapolated chaotic signals. This feature will help the study of nonlinear dynamical systems which require large number of chaotic data. To confirm the validity of the proposed system, nonlinear functions are reconstructed from 1-dimensional and 2-dimensional chaotic signals.

  • PDF

INTUITIONISTIC FUZZY FUNCTIONS

  • Hanafy, I.M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.200-205
    • /
    • 2003
  • In this paper, we generally introduce some of the terminology of Yalvac [10] and Azad [4] in intuitionistic fuzzy topological spaces. In addition to the fundamental concepts of intuitionistic fuzzy sets, we emphasize the usefulness of the concepts of intuitionistic fuzzy points intuitionistic fuzzy elementhood. Mainly, this paper is devoted to the study of intuitionistic fuzzy topological spaces with specific attention to the weaker forms of fuzzy continuity.

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

T-FUZZY INTEGRALS OF SET-VALUED MAPPINGS

  • CHO, SUNG JIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.39-48
    • /
    • 2000
  • In this paper we define T-fuzzy integrals of set-valued mappings, which are extensions of fuzzy integrals of the single-valued functions defined by Sugeno. And we discuss their properties.

  • PDF

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.