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Abstract

In this paper, we generally introduce some of the terminology of Yalvac [10] and Azad [4] in intuitionistic fuzzy topological spaces. In

addition to the fundamental concepts of intuitionistic fuzzy sets, we emphasize the usefulness of the concepts of intuitionistic fuzzy points-

intuitionistic fuzzy elementhood. Mainly, this paper is devoted to the study of intuitionistic fuzzy topological spaces with specific attention

to the weaker forms of fuzzy continuity.
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1. Introduction

As the study of fuzzy topology can be regarded as a special
case of intuitionistic fuzzy topology, several authors (e. g. cf.
[3,5,6,7,8] ) continued investigations in intuitionistic fuzzy
topological spaces. Basic results and weaker forms of
continuity in fuzzy topology have been considered by many
workers ( e.g. ¢f. [4,9,10] ). In [1,2,5] , Atanassov and Coker
introduced the fundamental concepts of intuitionistic fuzzy sets
and intuitionistic fuzzy topological spaces. In this paper, some
results are given concerning fuzzy points and fuzzy sets in
intuitionistic fuzzy topological spaces. The definition of fuzzy
Urysohn space which is defined by Yalvac [10] is extended to
intuitionistic fuzzy sets. Furthermore some results are obtained
in the functions of semicontinuous, S-— continuous, almost
continuous and weakly continuous of the intuitionistic fuzzy
topological spaces defined by Guracy et. al. [7] and those are
defined here.

2. Intuitionistic fuzzy sets

First we shall present the fundamental definitions obtained
by K. Atanassov and D. Coker.

Definition 2.1 [2]. Let X be a nonempty fixed set. An
intuitionistic fuzzy set ( IFS, for short ) U is an object having
the form U = {{x,p, (x)v, (x)):x€X}
p, :X—1 and v,:X —Idenote the degree of membership

where the functions

(namely p (x)) and the degree of nonmembership (namely
v,(x)) of each element xc X tothe set U, respectively, and

0<pu, (X +r,(x)<1 foreach xeX.
Obviously, every fuzzy set U on a nonempty set X is an
IFS having the form

U= {(x,;zv(x),l—uu(x)):xeX} *
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Definition 2.2 [2]. Let X be a nonempty set and the IFS’s
U and ¥ be in the form

U = {(x, 4y (X),v, (¥)): x € X}, ¥ = {{x, 1, (x),v, (1)) : x € X} and
let{U,: jeJ} be an arbitrary family of IFS’sin X , then:

O ULV iffVxe X[p, (D) S pp(x) U and vy (x) 2 v, (x)];

(i) U = {{x,v, (x), 1, (x)): x € XY

@iy A U;={xA p, (x)V v (x):x€X}

Vv U, ={xV u, éx),/\ v, ix)):xeX};

) 1={x10):xe //Y} and ]0 ={{x,0,l): x€ X};

@) U=U,0 =1 and 1 =0.

Definition 2.3 [5]. Let X and Y be two nonempty sets
and f:X—Y be a function.

O If V={y,u, (), v,(»)):y€Y} is an IFS in Y, then the
preimage of Vunder f is denoted and defined by

L ={x T w )@ ST @ )0) xe X

@) If U= {xA (), v, (x):xeXx} isanIFS in X, then
the image of U under f is denoted and defined by
FWY={n, fO)IN S (W )»):yeY} where
sup A, (x) i f7'(»=0
SO p)y={="'m i
0, otherwise
inf i . —1 0
and f (0, =1 f1-v,) = O
- ) 1, otherwise

Corollary 2.4 [5]. Let U, U (jeJ) IFS’sin X, V, V,(j€J)
IFS’sinYand f:X —Y be a function. Then
@) U|SU2=>f(U1)Sf(Uz);

@) V<V=> RS
@iy UL SO
U=/1"'0n)

@) fUy<y (ffisonto, then f(f'(V)=V;

(If f is one-to-one, then



O SV =VETP) and AV =AY
0 SVU)=VFU) and  fINUYSASWU (I f is
injective then  f(AU ) =Af(U)));

iy f(1)=1 and fCoy=0;
(i) f(1)=1 ,if f isonto.
(i)  f(0)=0;

x) f'W)=170)

Definition 2.5 [6]. Let X be a nonempty set and ceX a
fixed element in X. If a€(0,1] and be€[0,1) are two fixed
a+b<l, then the IFS
c(a,b)={x,c,,1—¢_,) is called an intuitionistic fuzzy point (IFP,

real numbers such that

for short) in X, where a denotes the degree of membership
of c(a,b)b the degree of nonmembership of c(a,b) and
ce X the support of c(a,b).

Definition 2.6 [6] Let c(a,p) be an IFP in X and
U=(xpu,,v;) an IFS in X. Suppose further that a,b<(0,1).
c(a,b) is said to be properly contained in U (c(a,b)€U,

Jor short) iff a<p,(c) and b>y,(c).

Definition 2.7 [6]. (i) An IFP c(a,b) in X is said to be
quasi-coincident with the IFS U={(xpu,,v,), denoted by
c(a,b)qU, iff a>vy,(c) or b<y,(c).

@) Let U={(xu,,v,) and V={xu,v,) be two IFS’s in
X . Then, U and V are said to be quasi-coincident, denoted
by UgV, such that
py (x)> v (x) or v, (x)< p, (x). Also, we denote the negation of
UqV by UgV.

iff there exists an element xeX

Proposition 2.8 {8]. Let f:X —Y be a function and c(a,b)
isan IFP in X.

() If for IFS ¥
cla,b)gf ™ V).

@) If for IFS U in
Sf(c(a,b))gf (U).

in ¥ we have f(c(a,b))qV, then

X we have c(a,b)qU, then

Definition 2.9 [5]. An intuitionistic fuzzy topology (IFT, for
short) on a nonempty set X is a family ¥ of [FS’s in X
satisfying the following axioms:

@) 0,1€Y;

(ir) UI /V\U2 €V forany U, U,€eV¥;

@)y U,e¥ forany { U,:jeJiCV¥.

In this case the pair (X, V) is called an intuitionistic fuzzy
topological space ( IFTS, for short ) and each IFS in ¥ is
known as an intuitionistic fuzzy open set ( IFOS, for short ) in
X .

The complement U of IFOS U in IFTS (X,¥) is called
an intuitionistic fuzzy closed set { IFCS, for short ).
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Definition 2.10 [5]. Let U be an IFS in an IFTS (X,¥). U
is called an intuitionistic fuzzy semiopen (semiclosed) (resp.
preopen (preclosed), B— open ( 3— closed), regular open
(regular closed) ) set, (IFSOS (IFSCS ) (resp. IFPOS ( IFPCS),
IF 8 OS (IF g CS ), IFROS (IFRCS),for short), if

U<clint(U) (U 2intcl(U))

(resp.U <intcd(U) (U > clint(U)) ,

U <clintcl(U) (U > intclint (U)),

U=intcd(U) (U=clint(U)}).

Definition 2.11 . Let (Xx,%) be an IFTS and
U={(x,pu (x),v (x)) be an IFS in X . Then the fuzzy interior
[5]( 8 -interior) and fuzzy closure [5] (@ -closure) of U are
denoted and defined by:

cdUBclUy=ANK:K 1is an IFCS (IF 8 CS) in X and
U<K} and imU(BintU)=V {G:G is an IFOS (IF30S) in
X and G<U}.

Proposition 2,12 [5]. For any IFS U in IFTS (X,¥) we
have

() U =intU, (i) intU =clU.
Theorem 2.13 [7].
IFSCS.

(ify Any union of IFSOS’s is an IFSOS.

(i) Any intersection of IFSCS’s is an

Definition 2.14 [3]. Let (X,¥) be an IFTS on X and
c(a,b) an IFP in X. An IFS N is called ¢—nbd (¢q —nbd)
of c(a,b) if there exists an IFOS G in X such that
c(a,b)e G N (c(a,b)}gG<N).

The family of all e-nbd (eg—nbd) of c(a,b) will be
denoted by N (N?)(c(a,b)).

Definition 2.15. A function f:(X,¥)— (¥,®) is called an
intuitionistic fuzzy open (resp.preopen) (IFO (resp.IFPO, for
short)) iff the image of every IFOS in X is an IFOS (resp.
[FPOS) in Y.

3. Basic results
Theorem 3.1. Let c(a,b) be an IFP in (X,¥) and U an

IFS in X. Then «c(ab)eciU iff UgN for
N € N¥(c(a,b)).

every

Proof. Suppose that there exists N € N%(c(a,b)) such that
UgN. Then there exists Ge ¥ such that c(a,b)gG<N and
GgU. Since G is an IFCS and by proposition 3.11 in
[6] ,we have cIU<G. Also since c(a,b)¢G , we have

cla,b)¢ clU  which is contradiction.
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Conversely, suppose c(a,b)¢clU. Then there exists an
IFCS ¥ such that c(a,b)¢V and U<V. Hence by
proposition 3.11 in [6], Ve¥ such that c(ab)g/ and
UqV which is a contradiction.

Theorem 3.2. U is an IFOS in X iff for every IFP
c(a,b)qU, U € Ni(c(a,b)).

Proof. Let U={(xu,(x)v,(x)) be an IFOS in X and
c(a,b)qU. Then c(a,b)qU <U. Hence U € N?(c(a,b))

Conversely, let c(a,b)cU, this implies a<p,(c) and
b>v,(c). Since abe(0) and a+b<1, we have
c(a,b)qU and by hypothesis U € N?(c(b,a)), then there exists
an IFOS G such that c(b,a)gG<U which implies
c(a,b)c G<U. Hence U isanIFOS.

Theorem 3.3. Let U,V be IFS’sin (X,¥). Then U<V iff
c(a,b)eU = c(a,b)eV forevery IFP c(a,b) in X.

Proof. Let U={c,pu,(c)v,(c)) and ¥V ={(cu (c)v,(c) be
IFS’s in X such that U<V and c(a,b)eU. This implies
#y(0) < . (0), v()2v, () and  a<p,lc) b>wyy(c).
Clearly a<p,(c)<u(c) and b>vy,(x)>v,(x). This gives
c(a,b)eV.

Conversely, let c(a,b)cU=c(a,b)eV but U£LV. Then
for some IFP c(a,b), V(c)<U(c). Then pu,(c)<a<p,(c)
and v,(c)>b>v,(c) then c(a,p)eU but c(a,b)¢V which
is a contradiction. This completes the proof.

Corollary 34. Let U,V belIFS’sin (X,¥). Then U=V iff
c(a,h)eU =  c(a,b)eV forevery IFP c(a,b) in X.
Proposition 3.5. Let UV be JFS’s in
imU <V <clU.

@) if U isanIFSOSthensois V.

@) if U isanIFSCS thensois V.

(X,¥) and

Proof. (i) Let U beanIFSOS and intU <V <clU. There
exists Ge¥ suchthat G<U <clG. It follows that
G<imU <U<clU<clG andhence G<V <clG Thus ¥V
is an IFSOS.

(i) Similar to ().

Theorem 3.6. Let U beanIFSin (X,¥). U isanIFSOS
iff forevery IFP

cla,b) €U (cla,b)qU )

there exists an IFSOS ¥, such that
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cla,b) eV, U (c(a,b)gV, <U).

Proof. If U is an IFSOS, then we may take V. =U for

every c(a,b)eU.

Conversely, from Proposition 3.8 [6], we have
U= v c(a,b) < cl/qu <U and hence U= ;/UVE. This shows,
from Theorem 2.13, that U is an IFSOS.

The proof of the second part is similar.

Lemma 3.7. Let f:(X,¥)— (Y,®) beafunctionand c(a,b)
be an IFP in X. If c(a,b)ef'(V), then f(c)a,b)eV, for
every IFS V= {(f(c),u, (f(e)),,(f(c))) in Y.

Proof. Let c(a,b) beanIFPin X and c(ab)€ f'(V). This
implies that a< f™'(u,Xc) and b> f~'(v,)(c) which implies
that a<p,(f(c)) and b>v,(f(c). Hence f(c)ab)eV.

Lemma 3.8. If f:(X,%)—(¥,®) be an IFO function and
NeN{(c(ab))y for c(a,p)e X , then
S(N)e NI(f(c(a,b))).

every IFP

Proof. (i) Let N =/{(c,u,(c),v,(c))€ N(c(a,b)).

Then there exist Ge ¥ such that ¢(a,b)qG<N. This implies
that f(c)(a,b)qf (G)< f(N) ( Theorem 2.8 (ii)). Since f is
IFO function, we have f(G)e®. Thus f(N)e€ N(f(c(a,b))).

Theorem 3.9. If f:(X,¥)— (¥,®) be an IFO function, then
[ edmy< cf '), foreveryIFS ¥ in Y.

Proof. Let V= (f©,u (S, (f(c)) be an IFS in
Yand c(ab)e f7'(clV). Then f(c)a,b)e fF (cIV)<clV.
Let N ={c,uy(c),vy(c))€ Ni(c(a,b)).
From Lemma 3.8,

SN =L, f XS Sy XS ()} € NI (f(c(a,b))),

c(a,b)e £ (V)
implies f(c(a,p))<clV and from Theorem 3.1 there exists an
IFP e in Y such that f(u,)e)>v,(e) or f.(vy)e)< py(e)
We choose £>0 such that

fluyde)—e>vy(e) or  fLvy)e)+e<p(e)

Since Sy Xe)= Sup fhy @

and [ (v,)(e)= 1fr}‘f; )VN(C), there exists an IFP ¢, € f7'(e)

such that  f(uyXe)—e < (c)) and f(vyNe)+e>vy(c)
For this ¢,, v, (e)=f"(v,X¢,) and (@)= £ Xey) -
We  have py(co) > f~| (wp)c,) or vy(e) < fﬁl(ll;' Nep) s

which implies that Ngf~'(¥). Since this result is true for every
NeN*(c(a,b)) , we have c(a,b)eclf'(¥) (Theorem 3.1).
By Theorem 3.3, hence the result.



Corollary 3.10. If f:(X,9)—(¥,®) be an IFO and
intuitionistic fuzzy continuous (IFC, for short) function, then
SN edVy=clf '(v), foreveryIFS V in Y.

Proof. Similarly to the proof of Theorem 3.9, one can show
that if f is an IFC function, then clf'(V)< f'(c!V). Hence
the proof is clear.

4. Intuitionistic fuzzy functions

Definition 4.1 [7]. A function f:(X,¥)— (Y,®) is called an
intuitionistic fuzzy semicontinuous (IFSC, for short) if 7 '(V)
isan IFSOS in X, forevery Ve®.

Theorem 4.2. Let f:(X,¥)—(¥,®) be a function. The
following are equivalent.

(i) £ isanIFSC.

(i) For every IFP c(a,b) in X and every
M € N.(f(c))a,b), there exists an [IFSOS U in X such that
c(a,b)eU < £ (M).

(iiiy For every IFP ¢(@b) in X and every
M € N.(f(c)Xa,b), there exists an IFSOS U in X such that
cla,p)eU and fU)<M.

(iv) For every IFP c(a,b) in X and every
M e N/(f(c))(a,b), there exists an IFSOS U in X such that
cla,b)qU and fU)< M.

WS ' <clint f7'(7), forevery Ved.

Proof. (iy=(ii): Let c(a,b) be an IFP in X and
M € N.(f(c))a,b). There  exists Ved such  that
fleyeV <M. f/'(¥)=U 1is an IFSOS in X and we have
cefN=ULf (M)

@)= (iii): Let c(a,b) be an IFP in X and
M e N (f(c)a,b). There exists an IFSOS U in X such that
cla,p)eU< f'(M). So we have cla,b)eU, fU)Y<
Fronsm.

(iEiy=(): Let ¥e® and let us take c(e,b)c f'(V). This
shows that f(c)e f '(¥)<V. Since V is an IFOS in Y
we have Ve N.(f(c))a,b). There exists an IFSOS U in X
such that c(aq,b)eU and fU)<V. This shows that
cla,p)eU < f7'(¥). From Theorem 3.6, f'(V) is an IFSOS.
Hence f 1is IFSC function.

(@H=(@): Let c(ab) be an IFP in X and
M e NI(f(c)Xa,b). There  exists Ved such  that
f(cXabygV <M. f'(v) is an IFSOS and from Proposition
2.8, we have c(a,b)gf'(V). If we take U= f'(V) then
JWy=fF'W<U M.

INTUITIONISTIC FUZZY FUNCTIONS

(iv)=(@(@): Let Vc® and let us take c(a,h)gf '(¥). This
implies f(c)(a,b)qV.
Ve N(f(c))a,b). There exists an IFSOS U in X such that
c(a,b)qU and fU)<V. This shows that c(a,b)qU < f (V)
which implies that f '(V) is an IFSOS (Theorem 3.6).

Since ¥ is an IFOS in Y we have

()= (v): Since f '(¥) isanIFSOSin X forevery Ve,
we have f '(V)<clint f (V).

(v)=(i): Since any IFS U in X which satisfies the
relation U <clintU will be an IFSOS, we have that f '(V)
is an [FSOS for every V€ ®.

Definition 4.3 [7. A function f:(X,¥)—(¥,®) is called
an intuitionistic fuzzy weakly continuous (IFWC, for short) if
'Oy <int(f Y(clV)) , forevery Ved.

An IFC function is always IFWC, but the converse is need
not be true.

Theorem 4.4. Let f:(X,¥)—(¥,®) be a function. The
following are equivalent:

(i) f isanlIFWC.

(i) f'Wy=clf '(intV), forevery IFCS ¥ in Y.

(i) ol f'WYL S (clV), forevery Vco.

(iv) For every IFP c(a,b) in X and
MeN. (f(e)ab), f '(cIM)€EN (c)a,b).

(v) ForeveryIFP c(a,b) in X and M €N (f(c)Xa,b), there
exists UeW¥ suchthat c(a,b)eU and fU)<ciM.

Proof. (i)=(ii): Let ¥ be an IFCS in Y.Then Ve® and
£ \Py<intf (V). This implies that f '(V)<intf 'GntV)
(Proposition 2.12), WY <int £ (intVY =l f '(imtV).
Hence f '("y>clf '(intV).

(ii)y= (/): Similarto ()= (ii).

(iy=(ii): Let Ved. celv is an IFCS in
V <intclV. Hence

f NelVy>cl f '(intelVY>cl (V).

(i) =>(ii): Let ¥ beanIFCSin Y. This gives that
intV €® and clintV <V. Hence

o f U (imtVY< f elimV)YS (V).

(iy=(iv) ,(v)=(v) and (v)=-(i): can be easily proved.

Y and

Definition 4.5. An IFTS (X,¥) is called regular (IFRS, for
short) iff every U e ¥ isaumonof IFOS’s U, ’sof X such
that /U, <U forevery ;.

Theorem 4.6. Let f be a function from an IFTS (X,¥)
into IFRS (Y,®). Then fis an IFWC iff f isan IFC.
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Proof. Since IFC function implies IFWC, it sufficies to show
that if £ is an IFWC then it is IFC. Let Ue®. Since Y
is IFRS, U=VvU, U,e® and
Now f jis IFWC
[fO=1U)=vfU)<
\J(intf"(clUj)g\](intf"(U):intf"(U), and hence f'(U) is
anI[FOSin X. Thus f isan IFC function.

cdU,<U for every ;.

function implies that

Definition 4.7. An IFTS (X,¥) is called Urysohn iff ¢,¢,

be IFP’s in X and ¢ =g,
G = (%, 15 (0), (%)), H={x,p,(x),v,(x)) €T with
Be(e) =1 ve(e)=0, my(c,)=1 v,(c,)=0 and
cGAclH =9.

implies that there exists

Theorem 4.8.
equivalent:

@¢) X is Urysohn.

(i) For any distinct IFP’s ¢ and ¢, in X , there exist
IFOS’s G and H such that ¢9G , c¢gH and
cGAClH =9.

For an IFTS (X,¥), the following are

Proof. Obvious.

Theorem 4.9. Let f:(X,¥)— (Y,®) be an IFWC injective
function. If an IFTS (¥,®) is Urysohn, then (X,¥) is
Hausdorff ([5]) .

Proof. It follows directly from definitions, immeditely.

Definition 4.10. [7]. A function f:(X,¥)— (¥,®) is called
an intuitionistic fuzzy almost continuous (IFAC, for short) if
') isanIFOSin X, forevery IFROS ¥V in Y.

Theorem 4.11. Let f:(X,¥)—(Y,®) be a function. The
following are equivalent:

(@) f isanIFAC.

(i) For every IFP c(a,b) in X and
M € N.(f(c))a,b), there exists Uec¥ such that c(a,b)eU
and f(U)<intcdM.

(i) For every IFP c(a,b) in X and
M € N(f(c)a,b), there exists Ue¥ such that c(a,b)qU
and fU)<intclM.

@v)y f7'(v) isanIFCSin X .forevery IFRCSin Y.

o f'W)<int f'(intclV), forevery IFPOS vV in Y.

i) ol fclint HY< f~'(H), for every IFPCS H in Y.

i)y ') <int f\(intclV), forevery Ved.

(viiiy cl f~'(clint HY< f~'(H), for every IFCS H in Y.

Proof. ()= (ii): Let c(ap) be an IFP in X and
M € N_(f(c)Na,b). such that
fe)eV <M. Hence ce f7'(M). Since Ve,

There exists Ved
A (A
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then V <intclV and O < f nted V). Thus
c(a,b)€ f\(intclV). Since intclV is an IFROS ([7], Theorem

29), then [f'GintcIV) is an IFOS in X and
c(a,b)€ f~'(intclV). Consequently, there exists Uc¥ such
that cla,p)eU < f'(intcl V)< f'(int cl M). Hence
fWUY<intcl M.

(@)= (@): Let ¥ be an IFROS in Y and c(a,b)e f'(V),
then f(c)eV. Since V€@ we have VeN_(f(c))abd) By
(i) there exist UcW® such that c(qb)eU and
FW)<intclV=v. Then  c(ab)eU<f ).
fT'(P)e¥. Therefore f isanIFAC function.

Hence

(i) & (iii) : it can be proved in a similar way to the proof of
Theorem 4.2,

(He@v): Since f'(¥F)=s"'(¥), for every IFS ¥ in ¥,
the proof follows from Theorem 2.6 [7].

()< (v): Since V isanIFPOSin Y, then V <intclV and
hence f'(")< f'(intclV). Since intelV isan IFROS in
Y, f'GntclV)e®. Thus f'(F)<

[ @ntcdVy=int f~'(intclV).

(v« (i): Let H beanIFPCSin Y,then H isanIFPOS
in Y. By hypothesis

T H) = HY<int fntel H)=int f(int (int H)) =

int {7\ (clint H)=int(f \(clint H)y=ecl f'(clint H). Hence

c f'\(clint HY < £ (H).

(iye@v): Let ¥ be an IFRCS in Y . Then
V=climV and f'()=  f'(clint¥). By (vi) we have
df'Wy=c f N dim< ). Thus f'0)=  cdf ')
shows that f~'(¥) isanIFCSin X.

(i) = (vii) = (viii) = (iv): Since every an IFOS is an IFPOS, the
proof can be easily proved as a corollary of the proof
&)= @)= i)=(>v).

Theorem 4.12. If f:(X,¥)— (¥,®) is an IFWC and IFPO
function, then £ isanIFAC.

Proof. Let c(a,b) be an IFP in X and M €N_(f(c)Xa,b).
There exists Ve€® such that f(c)eV. Hence c(a,b)e
f7'(¥). Since f is an IFWC, there exists an IFOS U in
X such that c(a,b)eU< f'(cIV). Hence fU)<clV.
Since f is an IFPO function and Ue ¥, then f(U) is an
IFPOS in Y. Hence f(U)<intcl f(U)<intclV. Then f is
an IFAC function.



Definition 4.13 [7]. A function f:(X,¥)— (¥,®) is called
an intuitionistic fuzzy B -continuous (IF 8 C, for short) if
S7'¥) isanIFB0Sin X, forevery Ved.

Theorem 4.14. For any IFS U in (X,¥) we have
(i) BelU = BintU, (i) BintU = BclU.

Proof. (i) Let U =(xp, (x),v,(x)) and suppose that the
family of /FB0S’s contained in U are indexed by the
family {(x, #g () v, (x)): j€J}. Then we see

BintU = (x,V;tG) (x), A, (x)) and hence

M:(x,/\u(;] (x), Vi (). Since U = {x,v,(x), 1, (x)) and
H () < (%), v (x) 2w, (x) forevery j€J, we obtain that
{{xvg (0 pt; (0)): j€ J} is the family of IF 8 CS’s containing
U, ie. BelU = {{xAv, (x), Vi (x)). Hence BclU = BintU.

(ii) The proofis similar to (i).

Theorem 4.15. Let f:(X,¥)—(Y,®) be a function. The
following are equivalent.

() f isanIF 3 C.

(i) £'(V) isanIFBCSin X, forevery IFCS v in Y.
@iy f(BelU)<cl f(U), forevery IFS U in X.

) Bel f'(V)< f (el V), forevery IFS V in Y.

(v For every IFP c(ab) in X and every
VeN(f(c))ab) thereexistsan [IFFOS U in X such that
cla,p)eU and fU)<V.

Proof. (i)=(ii): Let ¥ be an IFCS in Y. Then V€&
and so f'(¥) is an IFB0S in X. But f'(V)=f"()
Hence fF'(v) isanIFB3CSin X.

(i)y=(@iri): Let U be an IFS in X. Then ¢l f(U) is an
IFCS in Y. By i), f'(cIfU)) is an IF 8 CS and so
F e fUY) = Belf (el f(U)). Since U< ffU), we
have BelU < Beif ™ f(U) < Belf (el f(UY) = £~ (cl f(U)).

@)= (iv): Let ¥ beanlIFSin Y. Thenby (iii), we have
f(Bel f7'(V)) <clff~'(¥). Hence
Bel f YA TN SV

(v)=(i): Let ¥e® Then ¥ isanlIFCS.By (iv), we have
Bel f7'(Vy< (V)= f (V). By Theorem 4.14, we have
VY2 Bel f (V)= Bint (7). f'w) is an
IF30Sin X.

Hence

INTUITIONISTIC FUZZY FUNCTIONS

(=): Let c(a,b) beanIFPin X and Ve N.(f(c))a,b).
Then there exists Ge® such that f(c)eG<V. By IF3C
function, f'(G) is an IF g OS in X  with
clab)e f (G)S f'(¥) .Hence , putting U=71 "(G) ,
U€EN.(c)ab) suchthat f(U)=f (G)SXG<V.

)= (i): Let Ved and  c(a,b)ef (V) Then
V€ N.(f(c)a,b). By hypothesis, there exists an IF30S U
in X such that c(a,b)eU<f'(V). Hence f '(¥) is an
IF g OS.
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