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T -FUZZY INTEGRALS OF SET-VALUED MAPPINGS

Sung Jin Cho

Abstract. In this paper we de�ne T -fuzzy integrals of set-valued mappings, which are

extensions of fuzzy integrals of the single-valued functions de�ned by Sugeno. And we

discuss their properties.

1. Introduction

Since Aumann [1] introduced integrals for set-valued mappings, several kinds of

integrals for set-valued mappings have been studied by many authors [3,5,6,7]. In fact,

they are all based on the classical Lebesgue integral.

Sugeno [9] introduced the concepts for fuzzy measures and fuzzy integrals for single-

valued mappings, which are useful in several applied �elds like mathematical economics,

optimal control theory and engineering. In particular, they have been studied by

Ralescu and Adams [8], Wang [11] and others.

On the other hand, using the approaches of Aumann, Zhang and Wang [14] and

Zhang and Gou [12,13] extended fuzzy integrals of Sugeno to set-valued mappings and

considered many properties.

In this paper, we extend fuzzy integrals of set-valued mappings to T -fuzzy integrals

of set-valued mappings, which are di�erent from those by Zhang and Guo [12]. And

we discuss properties of our integrals.
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In the sequel we will use the following concepts and notations. (
;�;m) is a prob-

ability measure space. Let � : � �! [0; 1](:= I) be a fuzzy measure in the sense of

Sugeno [9], and in addition, we assume � satis�es the following two conditions; for

A;B 2 �

(i) � is null-additive, i.e., �(A) = 0 implies �(A [B) = �(B),

(ii) �� m, i.e., m(A) = 0 implies �(A) = 0:

A set-valued mapping is a mapping F from 
 to 2I n f;g and it is measurable if its

graph is measurable, i.e.,

GrF = f(!; r) 2 
� I : r 2 F (!)g 2 �� B,

where B is the Borel algebra of I.

S(F ) is the family of m-a.e. measurable selections of F . It is known that S(F ) is a

closed subset of I
.

2. T -fuzzy integrals of set-valued mappings

In this section we give the de�nition of fuzzy integrals of set-valued mappings and

investigate their properties.

Definition 2.1[10]. A binary operation T on [0; 1] is called a t-norm if

(1) T (a; 1) = a,

(2) T (a; b) � T (a; c) whenever b � c,

(3) T (a; b) = T (b; a),

(4) T (a; T (b; c)) = T (T (a; b); c)

for all a; b; c 2 [0; 1].

Definition 2.2. Let F : 
 �! 2Inf;g be a measurable set-valued mapping and A 2 �.

The T -fuzzy integral of F on A is de�ned as

(T )

Z
A

Fd� = _�2IT (�; �(A \ F�));
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where F� = f! 2 
 : F (!) \ [�; 1] 6= ;g:

Remark A. De�nition 2.2 is di�erent from De�nition 3.1 [13] and is a generalization of

the following de�nition to set-valued mapping:

The fuzzy integral of a measurable single-valued function f : 
 �! I on A is de�ned

as

(T )

Z
A

fd� = _�2IT (�; �(A \ f�));

where f� = f! 2 
 : f(!) � �g; A 2 �:

This de�nition is a generalization of De�nition 3.1 [9] and is similar to De�nition

2.2 [13].

Proposition 2.3. (T )
R
A
Fd� = (T )

R


�A � Fd�, where

(�A � F )(!) =

�
F (!), if ! 2 A

f0g, if ! =2 A:

Proof.

(T )

Z
A

Fd� = _�2IT (�; �(A \ F�))

= _�2Inf0gT (�; �(A \ F�)) _ T (0; �(A \ F0))

= _�2Inf0gT (�; �((�A � F )�)) _ T (0; �((�A � F )0))

= _�2IT (�; �((�A � F )�))

= (T )

Z
�A � Fd�

Proposition 2.4. Let F be a measurable set-valued mapping. If �(A) = 0, then

(T )
R
A
Fd� = 0:

Proof. It is clear from De�nition 2.2.

By Proposition 2.3, sometimes we only discuss the integral on 
. And instead of

(T )
R


Fd�, we will write (T )

R
Fd�.
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Definition 2.5. Let F and G be measurable set-valued mappings. If F (!) = G(!) for

! 2 
, m-a.e., then we say F is m-a.e. equal to G, simply write by F = G m-a.e..

Lemma 2.6. Let F and G be measurable set-valued mappings such that F = G m-a.e.

Then �(F�) = �(G�):

Proof. Suppose that H = f! 2 
 : F (!) 6= G(!)g: Then m(H) = 0. Since � � m,

�(H) = 0. Since � is null-additive, �(F�) = �(H [ F�) = �(H [ G�) = �(G�). This

completes the proof.

From Lemma 2.6 we can obtain the following theorem.

Theorem 2.7. Let F and G be measurable set-valued mappings. If F = G m-a.e.,

then (T )
R
Fd� = (T )

R
Gd�.

Theorem 2.8. Let F : 
 �! 2I n f;g be a measurable set-valued mapping with closed

values. Then the following hold:

(i) (T )
R
Fd� = T (�; �(F�)) for some � 2 I.

(ii) supf2S(F ) f(!) � � for all ! 2 F�.

Proof. (i) Let (T )
R
Fd� = A: Then there exists f�ng � I such that limnfT (�n; �(F�n))g =

A: Without loss of generality, we can choose a subsequence of f�ng monotonically con-

verging to some � 2 I. Without confusion, we also denote it as f�ng. Since �n �! �,

monotonically, �n % � or �n & �. If �n % �, then F�n & \�nF�n = F� : Thus

lim�(F�n) = �(\F�n) = �(F�): If �n & �, then F�n % [�nF�n � F� . Therefore

A = lim
n
T (�n; �(F�n))

� lim
n
T (�n; �(F�))

= T (�; �(F�))

� _�2IT (�; �(F�))

= A:
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Hence A = T (�; �(F�)):

(ii) Since (T )
R
Fd� = T (�; �(F�)) for some � 2 I, for each ! 2 F� , by the Cas-

taing representation [3] there exists ffng � S(F ) such that lim fn(!) � �. We can

choose a subsequence ffnj (!)g of ffn(!)g such that ffnj (!)g is monotone increas-

ing or monotone decreasing. Suppose that ffnj (!)g is monotone increasing. Then

fnj (!)% lim fn(!). Therefore

sup
f2S(F )

f(!) � sup
nj

fnj (!) = lim fn(!) � �:

In case that ffnj (!)g is monotone decreasing, we can similarly show that supf2S(F ) f(!) �

�: Hence supf2S(F ) f(!) � � for all ! 2 F� .

Theorem 2.9. Let F : 
 �! 2I n f;g be a measurable set-valued mapping with closed

values. Then

(T )

Z
Fd� = (T )

Z
sup

f2S(F )

fd�:

Proof. Let A� = f! : (supf2S(F ) f)(!) � �g for �, 0 � � � 1. Then A� � F�. In

fact, for ! 2 A�, (supf2S(F ) f)(!) � �: We can choose a sequence ffng in S(F ) such

that fn(!) �! (supf2S(F ) f)(!) as n �! 1. Since fn(!) 2 F (!) and F (!) is closed,

(supf2S(F ) f)(!) 2 F (!): Since (supf2S(F ) f)(!) � �, F (!) \ [�; 1] 6= ;, i.e., ! 2 F�.

Since A� � F� for each � 2 [0; 1], (T )
R
supf2S(F ) fd� � (T )

R
Fd�:

Let's show the reverse inequality. By Theorem 2.8 (i) we can choose � 2 I such that

(T )
R
Fd� = T (�; �(F�)). Then �(F�) � � or �(F�) < �. Suppose that �(F�) � �.

By Theorem 2.8 (ii) (supf2S(F ) f)(!) � � for all ! 2 F� . Thus f! : (supf2S(F ) f)(!) �

�g � F� . Therefore

(T )

Z
sup

f2S(F )

fd� = _�2IT (�; �(f! : ( sup
f2S(F )

f)(!) � �g))

� T (�; �(f! : ( sup
f2S(F )

f)(!) � �g))

� T (�; �(F�))

= (T )

Z
Fd�:
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Suppose that �(F�) < �. By Theorem 2.8 (ii) (supf2S(F ) f)(!) � � for all ! 2 F� .

Thus f! : (supf2S(F ) f)(!) � �g � F� . Therefore

(T )

Z
sup

f2S(F )

fd� = _�2IT (�; �(f! : ( sup
f2S(F )

f)(!) � �g))

� T (�; �(f! : ( sup
f2S(F )

f)(!) � �g))

� T (�; �(F�))

= (T )

Z
Fd�:

This completes the proof.

Corollary 2.10. Let F : X �! 2I n f;g be a measurable set-valued mapping with

closed values. Then there exists g 2 S(F ) such that (T )
R
Fd� = (T )

R
gd�:

Proof. Since S(F ) is a closed subset of I
, S(F ) is also compact. Thus supf2S(F ) f = g

for some g 2 S(F ). By Theorem 2.9 (T )
R
Fd� = (T )

R
supf2S(F ) fd� = (T )

R
gd�:

Example 2.11. Let T (a; b) = a � b and de�ne a set-valued mapping F : [0; 1] �! 2I

by

F (!) =

8><
>:

3
4

if ! 2 [0; 1
4
) [ ( 1

2
; 1]

[ 1
2
; 1] if ! = 1

4
; ! = 1

2

f
1
2
; 1g otherwise.

Then S(F ) is compact and (T )
R
Fd� = 9

16
= (T )

R
fd�, where f : [0; 1] �! [0; 1]

is a function such that

f(!) =

� 9
16

if ! 2 [0; 1
4
] [ [ 1

2
; 1]

1 otherwise.

Propsoition 2.12. Let F : 
 �! 2I n f;g be a measurable set-valued mapping with

closed values and c 2 [0; 1]. Then

(T )

Z
(c _ F )d� = (T )

Z
cd� _ (T )

Z
Fd�:
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Proof. By Corollary 2.10 (T )
R
(c _ F )d� = (T )

R
gd� for some g 2 S(c _ F ). Since

(c _ F )(x) = fc _ f(x)jf(x) 2 F (x)g,

S(c _ F ) = fgjg(x) 2 (c _ F )(x)g = fgjg(x) 2 fc _ f(x)jf(x) 2 F (x)gg:

Therefore

(T )

Z
(c _ F )d� = (T )

Z
gd�

= (T )

Z
(c _ f)d� for some f 2 S(F )

= (T )

Z
cd� _ (T )

Z
fd� by Theorem 2.1[11]

= (T )

Z
cd� _ (T )

Z
Fd�:

Proposition 2.13. Let F : 
 �! 2I n f;g be a measurable set-valued mapping with

closed values. If F1 � F2 (i.e. F1(!) � F2(!) for each ! 2 
), then (T )
R
F1d� �

(T )
R
F2d�:

Proof. By Corollary 2.10 there exists an f1 2 S(F1) such that (T )
R
F1d� = (T )

R
f1d�.

Let

GrE = GrF2 \ f(!; i) 2 
� Ijf1(!) � i � 1g:

Then GrE 6= ;: Since F2 is measurable, GrE is measurable. Therefore E is a mea-

surable set-valud mapping with closed values. Since E is measurable, there exists

f2 2 S(E). Thus f2 2 S(F2) and (T )
R
f1 � (T )

R
f2d�: Hence

(T )

Z
F1d� = (T )

Z
f1d�

� (T )

Z
f2d�

� (T )

Z
F2d�:
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3. Convergence theorems

In this section we give the convergence theorems for set-valued mappings.

Let fAng � 2I be a sequence. Then lim supAn = f! : ! = limk�!1 !nk ; !n 2 Ang

and lim inf An = f! : ! = lim!n; !n 2 Ang are closed sets [2]. If lim supAn =

lim inf An = A, then we say fAng is convergent to A.

Using above de�nition, let fFng be a sequence of set-valued mappings, we can de�ne

lim supFn, lim inf Fn and limFn by pointwise way. For example:

(limsupFn)(!) = lim supFn(!) for ! 2 
, m-a.e.

Theorem 3.1 (Fatou's Lemma). Let fFng be a sequence of measurable set-valued

mappings with closed values. Then the following hold:

(i) lim sup (T )
R
Fnd� � (T )

R
lim supFnd�.

(ii) (T )
R
lim inf Fnd� � lim inf (T )

R
Fnd�:

Proof. (i) Let y = lim sup (T )
R
Fnd� and yn = (T )

R
Fnd�. Then there exist a subse-

quence fynkg of fyng such that y = lim ynk . By Corollary 2.10 there exist fn 2 S(Fn)

such that yn = (T )
R
fnd�. Thus ynk = (T )

R
fnkd�: Since ffnkg � I
, there exists a

subsequence ffmg of ffnkg such that ffmg is convergent. So lim ym = lim(T )
R
fmd� =

y. Therefore

y = lim (T )

Z
fmd�

= (T )

Z
lim fmd� by Theorem 2.3 [11]

� (T )

Z
lim supFnd�:

(ii) Let y = (T )
R
lim inf Fnd�. Then by Corollary 2.10 there exists f 2 S(lim inf Fn)

such that y = (T )
R
fd�: Write I1 = I � I � � � � , then I1 is a complete metric space

(with the metric induced by the usual product topology). For each ! 2 
, de�ne G(!)

of I1 by

G(!) = f(y1; y2; � � � ) : yn 2 Fn(!); lim yn = f(!)g:
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Then G is a measurable set-valued mapping [14]. By the Castaing representation [3]

there exists g 2 S(G). In fact g is a sequence of measurable functions ffng such

that fn 2 S(Fn). Moreover lim fn = f . Hence y = (T )
R
fd� = lim (T )

R
fnd� �

lim inf (T )
R
Fnd�.

Remark B. The proof of Theorem 3.1 (ii) is similar to the proof of Theorem 3.2 [14].

From Fatou's Lemma, we can obtain the following Lebesgue Convergence Theorem.

Theorem 3.2. Let fFng be a sequence of measurable set-valued mappings with closed

values and F a measurable set-valued mapping with closed values. If limFn = F , then

lim (T )
R
Fnd� = (T )

R
Fd�:

Proof. Since F = lim inf Fn = lim supFn,

(T )

Z
Fd� = (T )

Z
lim inf Fnd�

� lim inf (T )

Z
Fnd� by Theorem 3.1(ii)

� lim sup (T )

Z
Fnd�

� (T )

Z
lim supFnd� by Theorem 3.1(i)

= (T )

Z
Fd�:

Hence lim (T )
R
Fnd� = (T )

R
Fd�:
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