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T-FUZZY INTEGRALS OF SET-VALUED MAPPINGS

SunG JiN CHO

ABSTRACT. In this paper we define T-fuzzy integrals of set-valued mappings, which are
extensions of fuzzy integrals of the single-valued functions defined by Sugeno. And we
discuss their properties.

1. Introduction

Since Aumann [1] introduced integrals for set-valued mappings, several kinds of
integrals for set-valued mappings have been studied by many authors [3,5,6,7]. In fact,
they are all based on the classical Lebesgue integral.

Sugeno [9] introduced the concepts for fuzzy measures and fuzzy integrals for single-
valued mappings, which are useful in several applied fields like mathematical economics,
optimal control theory and engineering. In particular, they have been studied by
Ralescu and Adams [8], Wang [11] and others.

On the other hand, using the approaches of Aumann, Zhang and Wang [14] and
Zhang and Gou [12,13] extended fuzzy integrals of Sugeno to set-valued mappings and
considered many properties.

In this paper, we extend fuzzy integrals of set-valued mappings to T-fuzzy integrals
of set-valued mappings, which are different from those by Zhang and Guo [12]. And
we discuss properties of our integrals.
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In the sequel we will use the following concepts and notations. (£2,%,m) is a prob-
ability measure space. Let p : ¥ — [0,1](:= I) be a fuzzy measure in the sense of
Sugeno [9], and in addition, we assume p satisfies the following two conditions; for
ABeEX

(i) p is null-additive, i.e., u(A) = 0 implies u(A U B) = pu(B),

(ii) p € m, i.e., m(A) = 0 implies u(A) = 0.

A set-valued mapping is a mapping F' from Q to 27\ {0} and it is measurable if its
graph is measurable, i.e.,

GrF ={(w,r) € Qx1:7r€ F(w)} €XxB,
where B is the Borel algebra of I.

S(F) is the family of m-a.e. measurable selections of F'. It is known that S(F’) is a

closed subset of I.

2. T-fuzzy integrals of set-valued mappings

In this section we give the definition of fuzzy integrals of set-valued mappings and

investigate their properties.

Definition 2.1[10]. A binary operation T on [0, 1] is called a t-norm if
(1) T(a,1)

(a, ¢) whenever b < ¢,
T(b,a),
) =T(T(a,b),c)

(3) T(a;b)

(4) T(a,T(b,c)
for all a,b,c € [0,1].

(
(2) T(a,b) <

(

(a,

Definition 2.2. Let F : Q@ —s 21\ {()} be a measurable set-valued mapping and A € X.
The T-fuzzy integral of F' on A is defined as

(UAFWZV%JMWMHQM
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where Fp, = {w € Q: F(w) N [a, 1] # 0}.

Remark A. Definition 2.2 is different from Definition 3.1 [13] and is a generalization of
the following definition to set-valued mapping:
The fuzzy integral of a measurable single-valued function f : Q@ — I on A is defined

as
(1) [ fdn=VaerTeu(An ),
A
where fo ={w € Q: f(w) > a}, AcX.

This definition is a generalization of Definition 3.1 [9] and is similar to Definition

2.2 [13)].

Proposition 2.3. (T) [, Fdp = (T) [, xa - Fdu, where
F(w), ifwe A

o) ={ TS

Proof.

(T) /A Fdp = VaerT(a,u(ANFy))
= Vaenfoy T(a, u(ANFy)) VT (0,u(AN Fy))
= Vaenfoy (o, p((xa - F)a)) VT(0, u((xa- F)o))
= VaerT (e, p((xa - F)a))

— () [ xa- Fiu

Proposition 2.4. Let F' be a measurable set-valued mapping. If p(A) = 0, then
(T) [, Fdp = 0.

Proof. Tt is clear from Definition 2.2.

By Proposition 2.3, sometimes we only discuss the integral on . And instead of

(T) [ Fdp, we will write (T') [ Fdjp.



42 SUNG JIN CHO

Definition 2.5. Let F' and G be measurable set-valued mappings. If F(w) = G(w) for

w € Q, m-a.e., then we say F is m-a.e. equal to G, simply write by F = G m-a.e..

Lemma 2.6. Let F' and G be measurable set-valued mappings such that F' = G m-a.e.

Then u(Fy) = p(Gq).
Proof. Suppose that H = {w € Q@ : F(w) # G(w)}. Then m(H) = 0. Since p < m,

p(H) = 0. Since p is null-additive, p(Fy) = u(H U Fy) = p(H U G,) = p(G,). This

completes the proof.

From Lemma 2.6 we can obtain the following theorem.

Theorem 2.7. Let F' and G be measurable set-valued mappings. If F = G m-a.e.,
then (T) [ Fdup = (T) [ Gdp.

Theorem 2.8. Let F : Q — 21\ {0} be a measurable set-valued mapping with closed
values. Then the following hold:

(i) (T) [ Fdpu = T(8, u(Ey)) for some f € I.
(i) supseg(p) f(w) > B for all w € F.

Proof. (i) Let (T') [ Fdu = A. Then there exists {a,, } C I such that lim, {T (an, p(Fa,))} =
A. Without loss of generality, we can choose a subsequence of {a;, } monotonically con-
verging to some (3 € I. Without confusion, we also denote it as {«, }. Since a,, — 3,
monotonically, a, B or a, N\, B. If o, 7 B, then F,,, ~\, N, Fa, = F3. Thus

lim pu(Fy,) = p(NF,, ) = pu(Fg). If a,, N\ B, then F,,, 7~ U,, F,, C Fg. Therefore

A=1imT(an, p(Fa,))
< im T(en, p(Fg))
=T(B, u(Fp))
< VaerT(a, u(Fy))

= A.
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Hence A = T'(3, u(Fg)).

(ii) Since (T) [ Fdp = T(B, u(Fz)) for some 3 € I, for each w € Fj, by the Cas-
taing representation [3] there exists {f,} C S(F') such that lim f,(w) > 5. We can
choose a subsequence {fy;(w)} of {fn(w)} such that {f,,(w)} is monotone increas-

ing or monotone decreasing. Suppose that {f;(w)} is monotone increasing. Then
fn;(w) /lim f,(w). Therefore
sup f(w) Zsupfnj(w) :limfn(w) > B.
fes(F) i

In case that { f,; (w)} is monotone decreasing, we can similarly show that sup g gy f(w)

B. Hence supscg(py f(w) > 0 for all w € Fj.

Theorem 2.9. Let F : Q — 27\ {0} be a measurable set-valued mapping with closed

values. Then

@) [ Fau=@) [ s pin

feS(F)

Proof. Let Aq = {w : (Supsegr) f)(w) > a} for o, 0 < a < 1. Then A, C F,. In
fact, for w € Aq, (Supseg(py f)(w) > a. We can choose a sequence {f,} in S(F) such
that fn(w) — (supseg(r) f)(w) as m — oo. Since f,(w) € F(w) and F(w) is closed,
(supseser) () € F(w). Since (supjesim f)@) > @ F@) N [a1] £0, ie., w € Fa.
Since A, C F, for each a € [0,1], (T) [sup;eg(ry fdp < (T) [ Fdp.

Let’s show the reverse inequality. By Theorem 2.8 (i) we can choose § € I such that
(T) [ Fdp = T(B, u(Fp)). Then u(Fp) > § or p(Fs) < . Suppose that pu(Fs) > f.
By Theorem 2.8 (ii) (supscg(py f)(w) > Bforallw € Fg. Thus {w : (supseg(p) f)(w) >
B} D Fg. Therefore

@) [ sup fdp=Voes Tl s ( sup_ ) > a)

fES(F) fES(F)

>T(B,p({w: ( sup f)(w)=p}))

fes(F)
> T (B, n(Fp))

= (T) / Fdy.

>
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Suppose that p(Fg) < 8. By Theorem 2.8 (ii) (supseg(p) f)(w) > B for all w € Fp.
Thus {w : (supseg(p) f)(w) > B} D F. Therefore

(1) / sup fdp = VaerT(a,u({w: ( sup f)w) > a}))
fES(F) fES(F)
> TG, p({w: ( sup f)w) > B))
feS(F)
> T(B, u(Fp))

= (T) / Fdy.

This completes the proof.

Corollary 2.10. Let F : X — 20\ {0} be a measurable set-valued mapping with
closed values. Then there exists g € S(F') such that (T) [ Fdp = (T) [ gdu.

Proof. Since S(F) is a closed subset of I?, S(F) is also compact. Thus Supses(my f =9
for some g € S(F). By Theorem 2.9 (T) [ Fdp = (T) [ supsegp) fdp = (T) [ gdp.

Example 2.11. Let T(a,b) = a - b and define a set-valued mapping F : [0,1] — 27

by
3 ifwel0,3)uU(3,1]

(
Flw)=< [3,1] ifw=5w=3
1,1} otherwise.
Then S(F) is compact and (T) [ Fdp = 1 = (T) [ fdp, where f : [0,1] — [0,1]
s a function such that
- % w0 iUl
1 otherwise.
Propsoition 2.12. Let F : Q@ — 27\ {0} be a measurable set-valued mapping with

closed values and c € [0,1]. Then

(T) / (cV F)dp = (T) / cdu\ (T) / Fdp.
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Proof. By Corollary 2.10 (T) [(c¢V F)dp = (T) [ gdp for some g € S(cV F). Since
(cV F)(z) ={cV f(z)|f(z) € F(x)},

S(eVv F) ={glg(z) € (cV F)(x)} = {glg(x) € {cV f(z)|f(z) € F(2)}}.

Therefore

Proposition 2.13. Let F : @ — 27\ {0} be a measurable set-valued mapping with
closed values. If Fy C Fy (i.e. Fi(w) C Fa(w) for each w € Q), then (T) [ Fidp <

Proof. By Corollary 2.10 there exists an f; € S(Fy) such that (T') [ Fidp = (T') [ fidp.
Let
GrE =GrFaN{(w,i) € @ x I|f1(w) <i < 1}

Then GrE # (). Since F» is measurable, GrE is measurable. Therefore E is a mea-
surable set-valud mapping with closed values. Since F is measurable, there exists

f2 € S(E). Thus f> € S(F>) and (T) [ f1 < (T) [ f2dp. Hence
1) [ Fdn = (@) [

<(@) [ ady
< (@) [ Fadn
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3. Convergence theorems
In this section we give the convergence theorems for set-valued mappings.

Let {A,} C 2! be a sequence. Then limsup A, = {w : w = limy__, o Wy, ,wn € Ay}
and liminf A, = {v : v = limw,,w, € A,} are closed sets [2]. If limsup 4, =
liminf A,, = A, then we say {A,} is convergent to A.

Using above definition, let { F},} be a sequence of set-valued mappings, we can define
limsup F},, liminf F}, and lim F,, by pointwise way. For example:

(limsup F,)(w) = limsup F,,(w) for w € Q, m-a.e.

Theorem 3.1 (Fatou’s Lemma). Let {F,,} be a sequence of measurable set-valued
mappings with closed values. Then the following hold:

(i) limsup (T) [ Fpdp < (T) [limsup F,dp.

(i) (T) [liminf F,,dp < liminf (T) [ F,dp.
Proof. (i) Let y = limsup (T) [ F,dp and y, = (T') [ Fpdp. Then there exist a subse-
quence {yn, } of {y,} such that y = limy,,. By Corollary 2.10 there exist f,, € S(F},)
such that y,, = (T) [ fudp. Thus y,, = (T) [ fa,dp. Since {fn, } C I, there exists a
subsequence { f, } of { f,,, } such that {f,} is convergent. So limy,, = im(T) [ fidp =
y. Therefore

y =t (7) [ fmdy

=(T) /lim fmdp by Theorem 2.3 [11]
< (T)/limsupFnd,u.

(ii) Let y = (T) [ liminf F,,du. Then by Corollary 2.10 there exists f € S(liminf F),)
such that y = (T') [ fdu. Write I®® =1 x I x ---, then I* is a complete metric space
(with the metric induced by the usual product topology). For each w € Q, define G(w)
of I*° by

G() = {1,920 +) : Yn € Fa(@),limyn = ()}
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Then G is a measurable set-valued mapping [14]. By the Castaing representation [3]
there exists g € S(G). In fact g is a sequence of measurable functions {f,} such
that f, € S(F,). Moreover lim f, = f. Hence y = (T) [ fdp = lim (T) [ fodp <
liminf (T') [ F,dp.

Remark B. The proof of Theorem 3.1 (ii) is similar to the proof of Theorem 3.2 [14].
From Fatou’s Lemma, we can obtain the following Lebesgue Convergence Theorem.

Theorem 3.2. Let {F,} be a sequence of measurable set-valued mappings with closed
values and F o measurable set-valued mapping with closed values. If im F,, = F', then

lim (T') [ Fdp = (T) [ Fdu.
Proof. Since F' = liminf F,, = limsup F,,,
(T)/Fd,u = (T)/limiannd,u
< liminf (T) /Fndp, by Theorem 3.1(ii)
< limsup (7)) /Fndp,
<(T) /lim sup Frdu by Theorem 3.1(i)
=(T) /de,.

Hence lim (T') [ Fpdp = (T) [ Fdp.
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