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1. INTRODUCTION

When researcher wants to find the model of a system

mathematically, the differential equation has been widely used. 
However, there are so much nonlinearity and a number of time 

constrains in realistic system that the accurate differential 

equation can hardly be obtained. Though comparatively

precise model is acquired, the efficiency is decreased by 

model approximation. In order to solve this problem,
intelligent techniques, based on neural networks and fuzzy 

logic, have also been developed for system modeling[1]-[3].

Even though these intelligent modeling strategies have shown

effectiveness, especially for nonlinear systems, they have

certain drawbacks derived from their own characteristics. 
While conventional neural networks have good ability of

self-learning, they also have some limitations such as slow 

convergence, the difficulty in reaching the global minima in 

the parameter space, and sometimes instability as well[4]-[5].

In the case of fuzzy logic, it is a human-imitating logic, but 
lacks the ability of self-learning and self-tuning. Therefore, in 

the research on the intelligent modeling, FNNs are devised to 

overcome these limitations and to combine the advantages of 

both neural networks and fuzzy logic[6]-[7]. This provides a 
strong motivation for using FNNs for modeling and

controlling nonlinear systems. And the wavelet fuzzy

model(WFM) has the advantage of the wavelet transform by 

constituting the FBF, the conclusion part to equalize the linear 

combination of FBF with the linear combination of wavelet 
functions and modifying fuzzy model to be equivalent to

wavelet transform. The conventional fuzzy model cannot give 

the satisfactory result for the transient signal. On the contrary, 

in the wavelet fuzzy model, the accurate fuzzy model can be 

obtained because the energy compaction by the unconditional 
basis and the description of a transient signal by wavelet basis 

functions are distinguished[8]-[9]. On the other hand, chaos 

has received increasing attention in various areas such as

mathematics, engineering, physics, biology, and economics. 
One attractive topic concerning chaos is chaos control and 

modeling, which are needed to prevent a chaotic system from 

becoming unstable or trapped in performance degraded

situations due to the unpredictability and irregularity of

chaos[10]-[12]. Especially, the identification model of chaotic

system is needed for the chaos control. Therefore, for the 

modeling of chaotic system, we design a FNN structure based 
on wavelet that merges these advantages of neural network, 

fuzzy model and wavelet. The basic idea of WFNN is to

realize the process of fuzzy reasoning of wavelet fuzzy model 

by the structure of a neural network and to make the

parameters of fuzzy reasoning be expressed by the connection 
weights of a neural network. WFNNs can automatically

identify the fuzzy rules by modifying the connection weights 

of the networks using the gradient descent(GD) scheme.

Among various fuzzy inference methods, WFNNs use the 
sum-product composition. To verify the efficiency of our

network structure, we evaluate the modeling performance for 

chaotic nonlinear systems and compare it with those of the 

FNN and the WFM. 

2. STRUCTURE OF WAVELET BASED FUZZY 

NEURAL NETWORK

2.1 Wavelet frames and wavelet networks
Wavelet networks were first presented in the framework of 

static modeling. Generally, the property of wavelet functions 

can be expressed as follows: any function of )(
2

RL can be 

approximated to any prescribed accuracy with a finite sum of 

wavelets. Therefore, wavelet networks can be considered as an 

alternative to neural and radial basis function networks.

Wavelet frames, on the other hand, are constructed by simple 

operations for translation and dilation for a single fixed 
function called the mother wavelet. The following relation 

derives wavelet )(xjφ from its mother wavelet )( jzφ .
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where, the translation factor jm  and the dilation factor

jd are real numbers in R  and *

+R , respectively. 

The family of functions generated by φ  can be defined as 
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A family cΩ  is said to be a frame of )(
2

RL  if the following 

equation is satisfied.
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where, f  denotes the norm of function f  and >< gf ,

the inner product of functions f  and g . Families of 

wavelet frames of )(
2

RL  are universal approximators. For

the modeling of multivariable processes, multidimensional 

wavelets must be defined. A multidimensional wavelet

function is represented with tensor product of single

dimensional wavelet function as follows:

)()()( 11 nn xxx φφφ L=                               (4)

Assuming that single dimensional wavelet transform is

separated into n  orthogonal direction elements, Fourier 

transform )(φ̂  of each term )(xφ  in Eq. (4) is substituted 

for itself.

)(ˆ)(ˆ)(ˆ 11 nn xxx φφφ L=                               (5)
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It is proven that admissibility condition of Eq. (6) must be 

satisfied. On condition of attenuation, Eq. (6) can satisfy the 

following for )( ii xφ  that converges into 0  for +∞  and 

−∞ .

∫ = 0)( iii dxxφ                                     (7)

The condition of Eq. (3) should be satisfied to be wavelet 

frames as well. Therefore, )( ii xφ  which satisfied Eqs. (3) and 

(7) should be set as wavelet frame. In this paper, the

first-ordered differential form of the Gaussian probability 

density function is employed as a mother wavelet function that 

satisfies both of the conditions as Eq. (8).

)
2

1
exp()( 2zzz −−=φ (8)

And we use multidimensional wavelets constructed as the

product of iN  scalar wavelets ( iN  being the number of 

variables)
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2.2 Wavelet based Fuzzy Neural Network

Generally, the wavelet fuzzy model has the advantage of the 

wavelet transform by constituting FBF and conclusion part to 

equalize the linear combination of FBF with the linear 

combination of wavelet functions. The conventional fuzzy 

model cannot give the satisfactory result for the transient 

signal. On the contrary, in the wavelet fuzzy model, the

accurate fuzzy model can be obtained because the energy 

compaction by unconditional basis and the description of a 

transient signal by wavelet basis functions are distinguished. 

However, it is very difficult to identify the fuzzy rules and to 

tune the membership functions of the fuzzy reasoning

mechanism. Neural networks, on the other hand, utilize their 

learning capability for automatic identification and tuning, but 

they have the following problems: (i) they need accurate 

input-output data and (ii) their learning process is

time-consuming, to mention a few. Therefore, we design a 

FNN structure based on wavelet that merges these advantages 

of neural network, fuzzy modeling and wavelet. The basic idea 

of WFNN is to realize the process of fuzzy reasoning of 

wavelet fuzzy model by the structure of a neural network and 

to make the parameters of fuzzy reasoning be expressed by the 

connection weights of a neural network. WFNNs can

automatically identify the fuzzy rules by modifying the

connection weights of the networks using the gradient descent 

scheme. Among various fuzzy inference methods, WFNNs use 

the sum-product composition. The functions that are

implemented by the networks must be differentiable in order 

to apply the gradient descent scheme to their learning. 

Fig. 1 shows the configuration of WFNN, which has N

inputs ),,,( 21 Nxxx L , C  outputs ),,,( 21 Cyyy L , and nK

membership functions in each input n
x . The circles and the 

squares in the figure represent the units of the network. The 

denotations ,, dm  and the numbers 1,1 −  between the 

units denote connection weights of the network.
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1ŷ

11y

21y

1j
y

(A) (C)(B) (D) (E) (F)

-1

-1

-1

-1

ND

1D 1D

2a

1a

ND
nx

- 1

)(
1 NN

xA

)(2 NN xA

f

)( NNK xA
N

)(
121

xA

)(
111

xA
K

Cŷ
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Fig. 1 Network structure of WFNN

WFNN can be divided into two parts according to the process 

of the fuzzy reasoning: the premise part and the consequence 
parts. The premise part consists of nodes (A), (C), (D) and the 
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consequence parts consist of nodes (D) through (F). The

grades of the membership functions in the premise are 

calculated in nodes (A) and (C). The nodes (B) and (E) are 

used to equalize the linear combination of FBF with the linear 
combination of wavelet functions for the advantage of wavelet 

transform by constituting FBF and conclusion part. Therefore, 

the output node (F) is equivalent to wavelet transform.

Consequently, in our WFNN structure, the output cŷ  is 

calculated as follows:
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The detailed descriptions of input and output nodes are as 

follows. Where, input and output nodes are denoted by I
and O , respectively and subscript denotes each node.
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The input space is divided into R  fuzzy subspaces. The truth 
value of the fuzzy rule in each subspace is given by the 
product of the grades of the membership functions for the 

units in node D. Where, jµ  is the truth value of the j -th

fuzzy rule and jµ̂  is the normalized value of jµ . Fuzzy 

system realizes the center of gravity defuzzification formula 

using jµ̂  in Eq. (15). 

The consequence parts consist of nodes (D) through (F) and 

the fuzzy reasoning is realized as:

jR : NkNnknk Nn
AisxandAisxAisxIf LL ,,,11 1

),,2,1,,2,1( CcandRjythen jcjc LL ===

where, jR  is the j -th fuzzy rule, nkn
A  is fuzzy variables 

in the premise, jc  is a constant. Consequently, the output 

value of node (F) includes the inferred values.

The weights jc  are modified to identify fuzzy rules using 

the GD method. In order to apply the GD method, the squared 

error function is defined as follows:
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where, cŷ  is the output value of WFNN and rcy  is the

desired value. Using the gradient descent method, the

parameter set, },{ jcnc aγ = , can be tuned as follows: 
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and η  is called the learning rate.

3. MODELING OF CHAOTIC SYSTEM

The problem of system modeling consists of setting up a 
suitably parameterized identification model and adjusting the 

parameters of the model to optimize a performance function
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based on the error between the plant and the identification 

model outputs. 

The identification model is divided into two types as follows:

1) Parallel Identification Model: the output of identification 
model is fed back into the identification model, and 2)

Series-Parallel Identification Model: the output of plant is fed 

back into the identification model as shown in Fig. 2.

In this paper, we identify the chaotic nonlinear systems using 
the series-parallel identification model with a good

performance and convergence abilities. 

The training of WFNN identification model is performed by 

the GD method, as described in Section 2.2. 

Plant

(Chaotic System)

+

Identification

Input

1Z−

M

1Z−

1Z−

M

1Z−

Identification

Model

using

FWNN

+

_Identification

Error

Fig. 2 Series-parallel identification model

4. SIMULATIONS

In this section, we present computer simulation results to

validation the modeling performance of the proposed network 
structure for continuous-time chaotic system. For this purpose, 

we compare it with those of the FNN and the WFM. In this 

simulation, we consider the Duffing system as representative

chaotic system. The state equations of Duffing system is as 

follows:

⎥
⎦

⎤
⎢
⎣

⎡

++−
=⎥

⎦

⎤
⎢
⎣

⎡

)cos()()()(

)(

)(

)(

2

3

1 tbtyatxtxa

ty

ty

tx

&

&
           (20)

where typically 1.11 =a , 4.02 =a , 1.2=b , 8.1= .

Figure 3 represents the strange attractor of Duffing system. 

 
Fig. 3 The strange attractor of Duffing system

Because the characteristic of network structure is very

susceptible to several simulation environments such as initial 

value of network weight, sampling time, learning rate, etc., in 

this simulation, we use same parameters as shown in Table 1.

Table 1. The parameters and Results

Number of Membership Function

(Number of Mother Wavelet)
11

Sampling Time 0.01

Learning Rate 0.2

Initial Value RANDOM

Fig. 4 shows the process output, WFNN model output and 

error between these outputs. And Figs. 5 and 6 represent the 
modeling performances of FNN and WFM, respectively. From

these figures and Table 2, we confirm that modeling

performance using our WFNN model works better than two 

other models. 

Table 2. Modeling results for three network models

WFNN 0.0249

FNN 0.1302MSE

WFM 0.2260

 

Fig. 4 Modeling results for a WFNN model

Fig. 5 Modeling results for a FNN model
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Fig. 6 Modeling results for a WFM

5. RESULTS

In this paper, we have proposed a FNN structure based on 

wavelet that merges the advantages of neural network, fuzzy 
model and wavelet. We presented simulation results to

validate the modeling performance of proposed WFNN model

for chaotic nonlinear systems. Also, in order to evaluate the 

performance of the proposed WFNN structure, we have

compared the modeling performance of WFNN model with 
those of FNN and WFM models. As a result, it was shown that 

the modeling performance using WFNN model worked better 

than two models.  
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