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Abstract

In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply
this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has
the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the
linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy
rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their
learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that
merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to
realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters
of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the
fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our
network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.
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1. Introduction

The localization and path tracking problems for mobile
robots have been given great attention by automatic control
researchers in the recent literatures. Motion control of mobile
robots is a typical nonlinear tracking control issue and has
been discussed with different control schemes such as PID,
GPC, sliding mode, predictive control etc[1]-[6]. Intelligent
control techniques, based on neural networks and fuzzy logic,
have also been developed for path tracking control. Even
though these intelligent control strategies have shown
effectiveness, especially for nonlinear systems, they have
certain drawbacks derived from their own characteristics.
While conventional neural networks have good ability of
self-learning, they also have some limitations such as slow
convergence, the difficulty in reaching the global minima in
the parameter space, and sometimes instability as well[7][8].
In the case of fuzzy logic, it is a human-imitating logic, but
lacks the ability of self-learning and self-tuning. Therefore, in
the research on the intelligent control, FNNs are devised to
overcome these limitations and to combine the advantages of
both neural networks and fuzzy logic[9][10]. This provides a
strong motivation for using FNNs for modeling and
controlling nonlinear systems. And the wavelet fuzzy
model(WFM) has the advantage of the wavelet transform by
constituting FBF, the conclusion part to equalize the linear
combination of FBF with the linear combination of wavelet
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functions and modifying fuzzy model to be equivalent to
wavelet transform. The conventional fuzzy model cannot give
the satisfactory result for the transient signal. On the contrary,
in the wavelet fuzzy model, the accurate fuzzy model can be
obtained because the energy compaction by the unconditional
basis and the description of a transient signal by wavelet basis
functions are distinguished. Therefore, we design a FNN
structure based on wavelet that merges these advantages of
neural network, fuzzy model and wavelet. The basic idea of
WENN is to realize the process of fuzzy reasoning of wavelet
fuzzy model by the structure of a neural network and to make
the parameters of fuzzy reasoning be expressed by the
connection weights of a neural network. WFNNs can
automatically identify the fuzzy rules by modifying the
connection weights of the networks using the gradient
descent(GD) scheme. Among various fuzzy inference methods,
WENNs use the sum-product composition. The functions that
are implemented by the networks must be differentiable in
order to apply the gradient descent scheme to their learning.
In this paper, we design the direct adaptive control system
using  WEFNN structure. The control inputs are directly
obtained by minimizing the difference between the reference
track and the pose of a mobile robot that is controlled through
a WFNN. The control process is a dynamic on-line process
that uses the WEFNN trained by GD method. Through
computer simulations, we demonstrate the effectiveness and
the feasibility of the proposed control method.
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2. Structure of Wavelet Based FNN

2.1 Wavelet Frames and Wavelet Networks

Wavelet networks were first presented in the framework of
static modeling[14]-[17]. Generally, the property of wavelet
functions can be expressed as follows: any function of I? (R)
can be approximated to any prescribed accuracy with a finite
sum of wavelets. Therefore, wavelet networks can be
considered as an alternative to neural and radial basis function
networks. Wavelet frames, on the other hand, are constructed
by simple operations for translation and dilation for a single
fixed function called the mother wavelet. The following
relation derives wavelet @; () from its mother wavelet

¢(zj).

Tr—m;

¢](w):¢(TL):¢(zJ) 1)

7

where the translation factor 7% and the dilation factor d;
are real numbers in R and R.*, respectively. The family of
functions generated by ¢ can be defined as

1 rT—m;
2= _?cl—-qs (TL)’ m; € R endd; € RY (9
2
A family f2, is said to be a frame of [?(R) if the
following equation is satisfied.

Cfi< <P f> < CF50<C<+003)
59, € Q¢

where, f and < f,g> denote the norm of function f
and the inner product of functions f and g, respectively.
Families of wavelet frames of I?(R) are universal
approximators. For the modeling of multivariable processes,
multidimensional wavelets must be  defined. A
multidimensional wavelet function is represented with tensor
product of single dimensional wavelet function as follows:

¢(@) =i () ¢, (x,) 4)

Assuming that single dimensional wavelet transform is
separated into 7@ orthogonal direction elements, Fourier
transform of each term in Eq. (4) is substituted for itself.

b (w)=¢,(w) - ¢,(w,) )

where, ¢ (w) is Fourier transform of ¢ ().
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It is proven that admissibility condition of Eq. (6) must be
satisfied. On condition of attenuation, Eq. (6) can satisfy the
following for ¢;(z;) that converges into 0 for +  and

— 00,
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The condition of Eq. (3) should be satisfied to be wavelet
frames as well. Therefore, @; (%) which satisfied Eqs. (3) and
(7) should be set as wavelet frame. In this paper, the
first-ordered differential form of the Gaussian probability
density function is employed as a mother wavelet function
that satisfies both of the conditions as Eq. (8).

6 (2) == zexp(— 32 ®)

And we use multidimensional wavelets constructed as the
product of /V scalar wavelets as follow.

A, _ .
D,(z) = H¢ (zp) with zy= E——d—-@-& (9)
k=1 ik

2.2 Wavelet Based Fuzzy Neural Network

Generally, the wavelet fuzzy model has the advantage of
the wavelet transform by constituting FBF and conclusion part
to equalize the linear combination of FBF with the linear
combination of wavelet functions. The conventional fuzzy
model cannot give the satisfactory result for the transient
signal. On the contrary, in the wavelet fuzzy model, the
accurate fuzzy model can be obtained because the energy
compaction by unconditional basis and the description of a
transient signal by wavelet basis functions are distinguished.
However, it is very difficult to identify the fuzzy rules and to
tune the membership functions of the fuzzy reasoning
mechanism. Neural networks, on the other hand, utilize their
learning capability for automatic identification and tuning, but
they have the following problems (i) they need accurate
input-output data (ii) their learning process is time-consuming,
to mention a few. Therefore, we design a FNN structure based
on wavelet that merges these advantages of neural network,
fuzzy modeling and wavelet transform. The basic idea of
WEFNN is to realize the process of fuzzy reasoning of wavelet
fuzzy model by the structure of a neural network and to make
the parameters of fuzzy reasoning be expressed by the
connection weights of a neural network. WFNNs can
automatically identify the fuzzy rules by modifying the
connection weights of the networks using the GD scheme.
Among various fuzzy inference methods, WFNNs use the
sum-product composition. The functions that are implemented
by the networks must be differentiable in order to apply the
GD scheme to their leaming.

Fig. 1 shows the configuration of WFNN, which has NV
inputs (#1,2,,%x), and C outputs (Y1, 92,7, 9c), and
K, membership functions in each input Z,. The circles and
the squares in the figure represent the units of the network.
The denotations M, d,w and the numbers 1, — 1 between
the units denote connection weights of the network.
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Fig. 1 Network structure of WFNN

WFNN can be divided into two parts according to the
process of the fuzzy reasoning: the premise part and the
consequence parts. The premise part consists of nodes (A),
(C). (D) and the consequence parts consist of nodes (D)
through (F). The grades of the membership functions in the
premise are calculated in nodes (A) and (C). The nodes (B)
and (E) are used to equalize the linear combination of FBF
with the linear combination of wavelet functions for the
advantage of wavelet transform by constituting FBF and
conclusion part. Therefore, the output node (F) is equivalent
to wavelet transform. Consequently, in our WFNN structure,

the output ,7;0 is calculated as follows:

N N R
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&= &=

where,
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Mother wavelet: ¢ (z) =— zexp(— %zz)} 2= ij

k,: k-th fuzzy variable of n-th input, /V: input Num.,
K.: fuzzy variable Num of input 7, B: wavelet Num.

The detailed descriptions of input and output nodes are as
follows. Where, input and output nodes are denoted by / and
O, respectively and subscript denotes each node.
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The input space is divided into /A fuzzy subspaces. The
truth value of the fuzzy rule in each subspace is given by the
product of the grades of the membership functions for the

units in node (D). Where, 1; is the truth value of the J-th
fuzzy rule and ;M ; is the normalized value of M;. Fuzzy
system realizes the center of gravity defuzzification formula
using ﬁ ; in Eq. (14). The consequence parts consist of nodes
(D) through (F) and the fuzzy reasoning is realized as:

R If xyis Ay,

then y;,,=uw,

T, 18 Ay o
(j: 1,2,

and zy is Ay y
R and c=1,2,---,0)

where, R’ is the j-th fuzzy rule, Ay, is fuzzy variable in
the premise, W;. is a constant. Consequently, the output value
of node (F) includes the inferred values. The weights w;; are
modified to identify fuzzy rules using the gradient descent

method. In order to apply the gradient descent method, the
squared error function is defined as follows:

1 ~ ~
=_2_((yr1 )2+(yr2_y2)2+ +(yr0’—y0)2

an

where, g}c is the output value of WFNN and Y., is the
desired value. Using the GD method, the parameter set,
Y= {Gmch}, can be tuned as follows:

Y. (k+1) =7.(k) + Av. (k)

=7 (k) =50y
=7.(k) —”7%% "
=7 (k) +nWe—y.)v,
where, ¥ 3’?5;(;9)
aﬁc Ey”

j—l n=1 khn

and 77 is called the learning rate.
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3. Path Tracking Control for Mobile Robot
Using WEFNN

3.1 Dynamic Model of Mobile Robot

The mobile robot used in this paper is composed of two
driving wheels and four casters and is fully described by a
three dimensional vector of generalized coordinates constituted
by the coordinates of the midpoint between the two driving
wheels, and by the orientation angle with respect to a fixed
frame as shown in Fig. 2.

Fig. 2 Mobile robot model and world coordinate

We have the equation for motion dynamics as follows:

Xk+1 ‘Ix}c 5dkCOS (Gk + )
Yijr = k . 50k (19)
0, ., 9 ddsin (0, + - )
40,
_d—-d . d.—dq
6d = 5 do = 5

where, 0d and 66 are linear velocity and angular velocity.
And d,, d; and b are two incremental distances of two

driving wheels and distance between these two wheels,

respectively. In this model, the control input vector is

expressed by u; — {5dk1 50k]T

3.2 The Direct Adaptive Control System Using WFNN

In our control system, we design the direct adaptive control
system using the WFNN structure. The purpose of our control
system is to minimize the state errors £ (e,,€,,€5) between
reference trajectory and controlled trajectory of a mobile
robot. For this purpose, we train the WFNN's parameters using
the GD method. The overall control system is shown in Fig.
3. A WENN controller calculates the control input
u, = [6dy,60,]” by training the inverse dynamics of plant
iteratively. But, the updating of WFNN parameters through the
variation rate J(7,Y) in the GD method cannot be
calculated directly. So, we train the parameters of WFNN
through the transformation of the output error of plant. In our
WFNN structure, inputs, multidimensional wavelets, and two
outputs are considered as shown in Fig. 4.
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Fig. 4 WFNN structure for a mobile robot

In this structure, inputs are composed of errors between
reference trajectory and controlled trajectory, and outputs are
contro] variables. Each control variable is as shown in Eq.
(20).

3 R 3 R
ody= Y ane,+ nyjd_ Y e+ ZB
n= j= n= =1
3 R 3 R
59k— Zan9€n+ Engz ange + EB
n=1 j=1 n=1 j=1
20
where,
n m n
I (- (o Deap(— 3 (2 k)
BQ -—’LU n=1 .n k,n
m 7
gmexp( o (e ),
n=1
c={d,0}

Training Procedure :
- Definition of the following cost function so as to train the
WENN controller based on direct adaptive control technique.
1 2 2 2
C=5{lz,—2) + (y.—y) + (6.~ 0} @
+ Calculation of the partial derivative of the cost function
with respect to the parameter set of a WFNN controller.

aC — e, 3z —e, 8y e a6
87, e Y, o7,
8x du ou @2
T
Lgrou . _ g
Y a7, v (u) 57,
where, €, =Z,—Z, €, =Y. —Y, 60_97—0 and

N

Mobile Robots

J(u) = %Z is the feedforward Jacobian of plant and is
as follows.
cos (0, +—+ 6¢9k ) — in (0, + (%’k )
Jw)= . 69 6d 60
(u) sin (6, Tk) 05 (0, + k ) 23)
0 1

The partial derivative of the control input z with respect to
the parameters of a WFNN controller can be calculated by
using Eqgs. (24) and (25).

- Updating of WEFNN parameters. The minimization is
performed by the following iterative GD method.
Yn+1) =) +rn)=

where, 7] is the leamning rate of a WENN.

From Egs (22) and (23), is the gradient of the

ou
7,

controller output u, with respect to parameters set Y.

R
9 )
bu, jglyjc
Ow;, dwy,
3
€ Mg n 1,6 _mkn 9
_( n n ex — —_—
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R
1 en k,.n \2
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;lnzl 2 k,.n !
ou,
da =&

where, subscript ¢ and n denote control input and input of
WENN, respectively.

4. Simulation Results

In this section, we present simulation results to validate the
control performance of proposed WENN controller for the
path tracking of mobile robots. The control objective for our
tracking system is to minimizing the difference between the
reference track and the pose of mobile robot that is controlled
through a WENN controller. Because the characteristic of
network structure is very susceptible to several simulation
environments such as initial value of network weight,
sampling time, learning rate, etc., in this simulation, we use
same parameters as shown in Table 1, where initial values of
network weight are determined randomly. And the membership
function used in this simulation is as shown in Fig. 5. This
simulation considers the tracking of a trajectory generated by
the following displacements:
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Linear velocity &d =20cm/sec, Angular velocity 66 =0°/sec 0<z<5)
Linear velocity & =30cm/sec, Angular velocity 66 =59.3°/sec (5<r<10)
Linear velocity & =30cm/sec, Angular velocity 80 =-59.3°/sec  (10<t<15)
Linear velocity 8d =20cm/sec, Angular velocity 60 =0°/sec (15<t<20)

Table 1. The parameters

Fig. 5 Membership functions

Fig. 6 shows the reference path and the controlled path
using WFNN controller for a mobile robot. Also, Fig. 7 shows
the control errors for path tracking of a mobile robot. Figs. 8
and 9 show the control inputs from WFNN controller and the
feed forward Jacobian of a mobile robot system, respectively.
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Fig. 6 Controlled path using WENN controller
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Fig. 7 Path tracking errors
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Fig. 9 Feedforward Jacobian of each control input

From these figures and Table 2, we confirm that direct
adaptive control system using our WENN controller works
well although the tracking error was occurred in case that a
direction is changed. Also, from various simulations, we
identified that the learning rate has an effect on the control
performance compared with other network parameters. So, the
control performance is repeatedly confirmed using various
learning rates. Also, in order to evaluate the performance of
the proposed WFNN structure, we compare the control results
of a WFNN controller with those of FNN and WFM
controllers.

Table 2. The simulation result

0.0381cm

0.0432cm
0.25°

Figs. 10, 11 and 12 show the control performance
according to learning rate using WFNN, FNN and WEM
controller, respectively. From Fig. 11, the change of MSEs
with respect to learning rate is relatively small although the
magnitude of MSEs is large as a whole. On the contrary,
from Fig. 12, the change of MSEs with respect to leaming
rate is large. But, the magnitude of MSEs is very small if the
learning rate is chosen properly. From the result of these two
figures, FNN controller has the advantage that learning rate is
not sensitive to control performance, while, the mobile robot
can navigate more accurately using WEM controller.
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Fig. 12 Control results for a WFM controller

From the result of Fig. 10, we confirmed that if the WFNN
controller based structure is applied to direct adaptive control
system, it has these two advantages that the control
performance is not sensitive to learning rate with small MSEs.
Table 3 shows the average MSE with respect to learning rate
for each controller structure.

Table 3. Average MSE with respect to learning rate for each
controller structure

Mobile Robots

5. Conclusions

In this paper, we have proposed a FNN structure based on
wavelet that merges the advantages of neural network, fuzzy
model and wavelet transform. In addition, a WENN controller
based on direct adaptive control scheme has also been
presented for the solution of the tracking problem for mobile
robots. Through computer simulations, we have confirmed that
direct adaptive control system using our WFNN controller
works well although the tracking error was occurred in case
that a direction is changed.

Also, in order to evaluate the performance of the proposed
WFNN structure, we have compared the control results of
WENN controller with those of FNN and WFM controllers.
As a result, it is shown that the tracking performance of a
WENN controller is better than those of FNN and WFM.

References

[11 R. M. Desantis, "Path-tracking for car-like robots with
single and double streering", IEEE Trans. on Vehicular
Technology, Vol. 44, No. 2, pp. 366-377, 1995.

{21 X. Yang, K. He, M. Guo, and B. Zhang, "An intelligent
predictive control approach to path tracking problem of
autonomous robot", Proc. of IEEE Conf. on Systems,
Man, and Cybernetics, Vol. 4, pp. 350-355, 1998.

[3]1 C. C. Wit, H. Khennouf, C. Samson and O. J. Sordalen,
"Nonlinear control design for mobile robots", Recent
Trends in Mobile Robots, World Scientific, Singapore,
pp- 121-156, 1993.

[4] Z. P. Jiang and H. Nijmeijer, "Tracking control of
mobile robots: a case study in backstepping”,
Automatica, Vol. 33. No. 7, pp. 1393-1399, 1997.

[51 .. M. Yang and J. H Kim, "Sliding mode motion
control of nonholonomic mobile robots", IEEE Control
Systems, Vol. 19, No. 2, pp. 15-23, 1990.

[6] G. Dongbing and H. Huosheng, "Wavelet neural work
based predictive control for mobile robots", Proc. of
IEEE Int. Conf. on Systems, Man, and Cybernetics, Vol.
5, pp. 3544-3549, 2000.

[71 M. L. Corradini, G.. Ippoliti S. Longhi and S.
Michelini, "Neural networks inverse model approach for
the tracking problem of mobile robot", Proc. of RAAD
2000, pp. 17-22, 2000.

[81] M. L. Corradini, G. Ippoliti, and S. Longhi, "The
tracking problem of mobile robots: experimental results
using a neural network approach", Proc. of WAC pp.
33-37, 2000.

[9] S. Horikawa, T. Furuhashi and Y. Uchikawa, "On
identification of structures in premise of a fuzzy model
using a fuzzy neural networks", Proc. of the 2nd IEEE
Int. Conf. on Fuzzy Systems, pp. 661-666, 1993.

[10] T. Hasegawa, S. Horikawa, T. Furuhashi and Y.

0.0462 [emn]

0.0472 [em]

04173 [cm)

04768 [cm]

1.1682 [cm)

1.5236 [cm]

Uchikawa, "On design of adaptive fuzzy neural networks
and description of its dynamical behavior", Fuzzy Sets
and Systems, Vol. 71, No. 1, pp. 3-23, 1995.

117



International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 1, June 2004

[11] C. K. Lin and S. D. Wang, "Constructing a fuzzy
model from wavelet transforms”, Proc. of Fuzzy Systems
Symposium, Soft Computing in Intelligent Systems and
Information Processing, pp. 394-399, 1996.

[12]1 C. K. Lin and S. D. Wang, "Fuzzy modeling using
wavelet transforms”, Electronics Letters, Vol. 32, Issue
24, pp. 2255-2256, 1996.

[13] T. Kugarajah and Q. Zhang, "Multidimensional wavelet
frames", IEEE Trans. on Neural Network, Vol. 6, No.
6, pp. 1552-1556, 1995

[14] S. Mallat, "A theory for multiresolution signal
decomposition: the wavelet transform", IEEE Trans.
Pattern Anal. Mach. Intelligence, Vol. 11, No. 7,

674-693, 1989

[15] Y. C. Pati and P. S. Kirishnaprasad, "Analysis and
synthesis of feedforward neural networks using discrete
affine wavelet transformations", IEEE Trans. on Neural
Network, Vol. 4, No. 1, pp. 73-85, 1998.

[16] Q. Zhang and A. Benveniste, "Wavelet networks", IEEE
Trans. on Neural Network, Vol. 3, No. 6, pp. 889-898,
1992.

[17]1 Q. Zhang, "Using wavelet network in nonparametric
estimation", IEEE Trans. on Neural Network, Vol. 8,
No. 2, pp. 227-236, 1997.

Joon Seop Oh received the B.S. and M.S.
degrees in Electronic Engineering from
Kyonggi University, Suwon, Korea, in 1997
and 1999, respectively. Currently, he is
pursuing a Ph.D. degree in the Dept. of
Electrical and Electronic Engineering at
Yonsei University, Seoul, Korea. He has
worked in several areas including mobile
robot navigation, map construction, fuzzy logic control, neural
network, and Kalman filter. His current research interests are
in the design and synthesis of wavelet neural network for
tracking control of mobile robot.

Phone T +82-2-2123-2773
Fax 1 +82-2-362-4539
E-mail  : jsoh@control.yonsei.ac.kr

118

Yoon Ho Choi received the B.S., M.S,, and
Ph.D. degree in Electrical Engineering from
Yonsei University, Seoul, Korea, in 1980,
1982 and 1991, respectively. Since 1993, he
has been with School of Electronic
Engineering at Kyonggi University, where
he is currently a Professor. From 2000 to
2004, he was with the Department of
Electrical Engineering at The Ohio State University, where he
was a Visiting Scholar. Professor Choi is serving as the
Director for the Institute of Control, Automation and Systems
Engineers (2003-present). His research interests include
intelligent control, mobile and biped robot, web based control
system, robust control, chaos control and wavelet transform.

Phone 1 +82-31-249-9801
Fax : +82-31-249-9796
E-mail  : yhchoi@kuic kyonggi.ac.kr



