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Abstract: Most systems in the real world are non-linear
and can be represented by the non-linear autoregressive
moving average (NARMA) model. The extension of fuzzy
system for modeling the system that is represented by
NARMA model will be proposed in this paper. Here, fuzzy
basis function (FBF) is used as fuzzy NARMA(p,q) model.
Then, an approach to identify fuzzy NARMA models
based on fuzzy basis functions is proposed. The efficacy of
the proposed approach is shown from experimental results.
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1. Introduction

In real-life most systems are non-linear. Since linear
models cannot capture the behavior of limit data associated
with non-linear systems, it is important to investigate the
identification procedure for non-linear model [1], [5]. The
NARMA model provides a basis for such a development.

Most applications of fuzzy modeling rely on the
framework of autoregressive model or regression model
[2], [3]. This is the case because the inputs value for the
fuzzy models can be easily identified: they are simply the
lagged values of the time series itself or the exogeneous
inputs. Fuzzy models that are based on the framework of
autoregressive model or regression model fail to model a
system that is represented by NARMA model. As a result,
high prediction error may occur when applied fuzzy AR
model or fuzzy regression model for modeling NARMA
process.

Here we propose an alternative approach for identifying
NARMA models based on fuzzy basis function (FBF).
Fuzzy systems are represented as series expansion of fuzzy
basis functions. These fuzzy basis functions are capable of
uniformly approximating any real continuous function on a
compact set to arbitrary accuracy [3]. This means that
NARMA can be approximated within an arbitrary accuracy
by model based on FBF. In this paper, We performed two
kinds of statistical tests—autocorrelation test and chi-
squared test in order to measure the quality of fit.

2.Fuzzy Basis Function

In this paper, we consider a fuzzy system whose basic
configuration is shown in Fig.1.
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Fig. 1. Basic configuration of fuzzy systems.

If the fuzzy rule base consists of a collection of fuzzy
IF-THEN rule:

R!:IFx,is Fland...and x,is F, THEN yis G'

where 1=1, 2, ...L,Fand G' are labels of fuzzy sets in U
and V respectively, then fuzzy logic systems with a center
average defuzzifier, algebraic product inference, and
singleton fuzzifier consist of all functions of the form
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achieves its maximum value that is assumed to be one.
Fuzzy basis functions (FBF) are defined as

H,UFij(Xi)
pj(i)=—L—'-=1n——, j=1,2,3,.,L. )
Z(H,uFij(Xi))

=l st

Therefore, the fuzzy system in the equation.(1) is
equivalent to a fuzzy basis function (FBF) expansion:

L
yX) = Zle'jpj(i) (3)
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Here, Least square (LS) algorithm is proposed to
identify the parameters of the FBF expansion. To applied
LS algorithm, the FBF expansion is rewrite as

L
y®)=2.0;p;®)+¢
j=l

Given N input-output pairs, the matrix notation of the
equation can be written as

Y=PO +E, 4
Where
1 I 1 1
y P - Po £
Y = P = JE=
N .N N N
y P PL £

Then, © must satisfy the following equation:
(P"P) ® =PTY

The derivation of the equation (5) can be found in
Kreesuradej [7]. The inverse or pseudo-inverse of P'P are

usually utilized for finding the value of © .

One important property of FBF expansions is that FBF
expansions are capable of approximating any real
continuous function [3], [4]. This gives a justification for
using FBF expansions to model a dynamic system that is
usually described by continuous functions. In this work,
the FBF expansions will be applied to modeling NARMA
model.

3.Identification Procedure Of NARMA Model
Based On Fuzzy Basis Functions

Here, FBF is proposed to model NARMA (p.q) model,
which has the following form [6]:

)’(f)'_-f()’(t"'l),---, )’(t—ny),

(5)
e(t—1),.e(t—n,))+e(t)

where y(z) and e(z) are the system output and prediction
error, respectively; n, and n, are the maximum lags in the
output and noise, respectively, {e(¢)} is assumed to be a
white sequence, and f(.) is some non-linear function. The
identification procedure can be summarized as follows

(1) Choose n, and n, . Initially the set of

YO =lya-1 - ye-n)1"

FBF model is selected using the LS algorithm and the
initial model is used to generate the initial prediction error

sequence {s“’) (t)}.

(ii) An iterative loop is then entered to update the model.
At the k th iteration

y®) =[yt=1 - y@t-ny),

g(k—l) (t _ 1) . s(k-—l) ([ -n, )]T

FBF model is selected by LS algorithm and this gives rise
to the prediction error sequence {e(k)(t)} . Typically two to
four iterations are sufficient. [5]

The model validity tests are performed to assess the
model. If the model is considered adequate the procedure
is terminated. Otherwise go to step(i).

4. Experiment Results

As an experiment, the first 700 points of data generated
from the Eq.(6) are used to identify the fuzzy NARMA
based on the proposed approach. Then, the next 100 points
of data are used to test the fuzzy NARMA. For
comparison purpose, the same data set is also used to
identify the fuzzy NAR model. Then, the chi-squared test
and autocorrelations of residuals are used to validate both
models.

The results are given in Table 1 for both fuzzy NAR
model and fuzzy NARMA model. The outputs of
simulation and the model response are shown in Figs 2.
and 3. The correlation tests and chi-squared tests are shown
in Figs 4. and 5. respectively.

From the results, the fuzzy NARMA model provides
lower mean square error (MSE) and better standard
deviation (STD) of errors than the fuzzy NAR model.
According to the chi-squared tests and the correlation tests
in Figs 2, 3, 4 and 5, the fuzzy NARMA model is better
than the fuzzy NAR model.

2
Y1) =14y(t-1) exp[j%l} e(t)
(6)

2
+0.9¢(t~1) exp(f-—(g_—ll]

Table 1.Predicive modeling results

MODEL MSE STD
(Noise STD=0.5057) | TRAINING | TESTING | TRAINING | TESTING
Fuzzy NAR Model 0.3168 0.3969 0.5652 0.6297
Fuzzy NARMA Model 0.2496 0.3188 0.4999 0.5619
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Fig 2. Outputs of simulation (solid line) and Fuzzy NAR
Model (dashed line)

Value

L L L L " L s L "
710 720 730 740 750 760 770 780 790 800
t

Fig 3. Outputs of simulation (solid line) and the
identification model : Fuzzy NARMA Model (dashed line)
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Fig 4. Autocorrelations of residuals;
dotted line is 95 % confidence band,
dashed line is the correlation of the Fuzzy NAR Model and
solid line is the correlation of the Fuzzy NARMA Model
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Fig 5. Chi-squared tests; @(t)=e(t—1);
Dotted line is 95 % confidence limit,
dashed line is the value of { of the Fuzzy NAR Model and

solid line is the value of { of the Fuzzy NARMA Model

5. Conclusions

In this paper, an approach to identify NARMA models
based on fuzzy basis functions is proposed. From the
simulation results, the fuzzy NARMA model successfully
captures the behavior of the NARMA In the future, the
further comprehensive study and testing the proposed
model with complex time series model will be reported.
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