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Abstract

In this paper, a neuro-fuzzy system for quantitative
characterization of chaotic signals is proposed. The
proposed system is differ from the previous methods in
that the nonlinear functions of the nonlinear dynami-
cal systems are calculated as the invariant factor. In
the proposed neuro-fuzzy system, the nonlinear func-
tions are determined by supervised learning. From the
reconstructed nonlinear functions, the proposed sys-
tem can generate extrapolated chaotic signals. This
feature will help the study of nonlinear dynamical sys-
tems which require large number of chaotic data. To
confirm the validity of the proposed system, nonlinear
functions are reconstructed from 1-dimensional and 2-
dimensional chaotic signals.

1 Introduction

Chaos is the most frequently encountered phenomenon
in the study of nonlinear dynamical systems such as bi-
ological neural networks, power systems, and so on. To
analyze these nonlinear dynamical systems which ex-
hibit chaotic behavior, two major approaches are stud-
ied. Ome of these approaches is a system modeling.
For example, many physical, biological and chemical
processes are modeled by means of large ensembles of
interacting chaotic cells [1]. Among others, Pivka has
modeled the traveling waves by using resistor-coupled
Chua’s circuits [2]. Another approach is a quantita-
tive characterization by extracting the invariant factors
from the chaotic signals which are generated from non-
linear dynamical systems. In the quantitative charac-
terization of the chaotic signals, the metric entropy, the
dimensions and the spectrum of Lyapunov exponents,
etc. have been used as the invariant factors [3],[4]. For
example, Murayama et al. analyzed voluntary func-
tions in the upper limbs using fractal dimensions [5].
Although the gquantitative characterization and classi-
fication can be achieved effectively by using these in-
variant factors, we focused on the nonlinear functions
as an invariant factor.

In this paper, a neuro-fuzzy system for quantitative
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Fig.1 General architecture of the proposed neuro-fuzzy
system.

characterization of ehaotic signals is proposed. The
proposed method is differ from the previous methods
in that the nonlinear functions of the nonlinear dy-
namical systems are calculated as the invariant factor.
Hence, by exploiting the reconstructed nonlinear func-
tions, the proposed system can generate extrapolated
chaotic signals. This feature will help the study of
nonlinear dynamical systems which require large num-
ber of chaotic data such as chaos-control [6]. In the
proposed system, the nonlinear functions are recon-
structed by supervised learning. Furthermore, thanks
to the efficient supervised learning, the proposed sys-
tem can reconstruct the nonlinear functions from small
number of input data. The validity of the proposed
system is confirmed by numerical simulations.

2 Architecture

Figure 1 shows a general architecture of the proposed
neuro-fuzzy system. The proposed system consists of
N ponlinear function blocks. The nonlinear function
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Fig.2 Architecture of the fuzzy rule block.
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Fig.3 Membership functions.

block is built with a neuro-fuzzy based system con-
sists of a fuzzy rule block, a defuzzifier block, a learn-
ing block, and a delay block. The nonlinear function
blocks are in the learning process when the switches
SW1’s and SW2’s are in the terminals a’s. After the
learning process finished, the position of these switches
is reversed. Then, the nonlinear function blocks func-
tion as the nonlinear functions, F.(:) (s =1,...,N).

2.1 Fuzzy Rule Block

The inference rules F'R;’s used in the nonlinear func-
tion block are given by the form:

FR;:Ifzis A; thenyis B;, (:t=1,2,...,k) (1)
where z is an input variable, y is an output variable,
A; is a fuzzy set defined by the membership functions,
and B; is a fuzzy singleton, 1/S;(t).

Figure 2 shows the architecture of the fuzzy rule
block. In the fuzzy rule block, the matching degrees
Wi;(t)’s are determined by the following equation:

Wi(t) = min (g as("z(t)), . . -, pva(Vz(8))),
(i=1,2,...,k) (2)

where La(t), 2z(t), ..., and Nx(t) are the input values,
SA; (s=1,...,Nand i = 1,...,k) denotes the fuzzy
label for the input *z* in the ith fuzzy rule, (1 45, p24;,

., and p~ 4; are the membership functions as shown
in Fig.3, and £ is the number of the inference rules. In
Fig.2, the membership function block calculates the
membership functions. The MIN block realizes the
minimum operation in Eq.(2).
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Fig.5 Architecture of the learning block.

2.2 Defuzzifier Block

Figure 4 shows the architecture of the defuzzifier block.
In the defuzzifier block, the output fuzzy set, *Wi(t)
[ES1 () + ..+ TWi()/°Sk(t), is defuzzified by the
center of area (COA) method, where °S;(t) is the sin-
gleton’s element, / is Zadeh’s separator, and + is the
union operation. The output of the defuzzifier block,
*£(t + 1), corresponds to an estimated ¢ + 1th chaotic
signal. The defuzzified output *£(¢ + 1) is given by

YF L SSi(t) *Wi(t)

Szt+1) = -
( YF L SWilt)

3 (3:1127"'7N)
(3)

where ¢t denotes the count of the learning cycle.

2.3 Learning Block

Figure 5 shows the architecture of the learning block.
The singleton’s elements *S;(t)’s are determined in the
learning block. In the learning process, the ¢ + lth
chaotic signals are given as the supervisor signals cor-
responding to the respective sets of sample inputs,
Le(t)’s, 2z(t)’s, ..., and Nz(t)’s. The learning dynam-
ics is expressed by the following equation:
G+ 1) = z(t+ 1)) *Wi(t)
Zf:1 sWi(t) ’
(4)
where *z(t + 1) is the ¢t + 1th chaotic signal which is
given as a supervisor signal. The singleton’s elements

*S;(t+1) of Eq.(4) is stored in the memory. The learn-
ing process terminates when

| *Si(t+1) =* Si(¥)] <, (5)

sSi(t-f- 1) =* §;(¢) +

where € is a parameter.
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Fig.6 Convergence behaviors of the singletons.
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Fig.7 Nonlinear function reconstructed.

2.4 Delay Block

After the learning process finished, the nonlinear func-
tion blocks operate as a chaos generator. The proposed
system generates the chaotic signals from the nonlin-
ear functions which are determined by the supervised
learning. The delay block produces a unit delay and
feeds the delayed output.

3 Simulation

To confirm the validity of the proposed algorithm, nu-
merical simulations were performed. In the numerical
simulations, two types of the nonlinear functions are
reconstructed from the chaotic signals. The chaotic
signals are generated from the following equations:

Tent map : 'z(t+1) = 1-2'z(t)-0.5], (6)
Hénonmap: 'z(t+1) = 1+ 2z(t)—1.4'(t),
Zp(t+1) 0.3 z(t). (7)

These maps are the most famous nonlinear maps for
which a rigorous proof of the chaotic behavior has been
accomplished.

Firstly, the numerical simulations for the tent map
were performed. In numerical simulations for the tent
map, the following membership functions were used.

o Membership functions for the tent map:

Figure 6 shows the convergence behavior of the sin-
gletons for the tent map. In Figs.6, the singleton’s
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Fig.8 Chaotic signal generated from the reconstructed
nonlinear function in Fig.7.

element values converged to their final values after 100
learning cycles. This result means that the proposed
system requires only 100 input data to reconstruct the
nonlinear function of the tent map. Figure 7 shows
the examples of the reconstructed nonlinear functions
obtained by using the final values of the singletons of
Fig.6. Figure 8 shows the examples of the chaotic sig-
nals obtained by the reconstructed nonlinear functions
in Fig.7. In Fig.8, the initial value, Xg, was set to 0.1.

Secondly, numerical simulations for the Hénon map
were performed. In numerical simulations for the
Hénon map, the following membership functions were
used.

e Membership functions for a Hénon map:

-3tz + (1/3)(i — 11/2)],
1- 9%z + (1/9)(i — 11/2)],
(i=1,...,10). (9)

.“‘Ai(lx)
2
p2a;(“x)

Figure 9 shows the examples of the reconstructed non-
linear functions for the Hénon map.

Figure 10 shows the examples of the strange attrac-
tor obtained by the reconstructed nonlinear functions
in Fig.9. In Fig.10, the initial values, Xo and Yy, were
set to 0.1 and 0.1, respectively. As one can see from
Figs.8 and 10, the proposed system can generate ex-
trapolated chaotic signals from the reconstructed non-
linear functions. The precision of the reconstructed
nonlinear function depends on the number of the sin-
gletons and the parameter e. The error of the recon-
structed nonlinear function can be reduced by increas-
ing the number of the singletons.

4 Conclusion

In this paper, a neuro-fuzzy system reconstructing non-
linear functions from chaotic signals has been pro-
posed. The simulation results showed that the pro-
posed system can reconstruct the nonlinear functions
from the chaotic signals and can generate the chaotic
signals from the reconstructed nonlinear functions.

The circuit implementation of the proposed system
is left to the future study.
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Fig.9 Nonlirear functions for a Hénon map. (a) Reconstructed nonlinear functions. (b) Ideal nonlinear functions
obtained from Eq.(7).
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Fig.10 Strange attractor of the Hénon map. (a) Gen-
erated from the reconstructed nonlinear function. (b)
Generated from the ideal nonlinear function.
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