• Title/Summary/Keyword: Future Mathematics classroom

Search Result 32, Processing Time 0.023 seconds

Teaching Methodology for Future Mathematics Classroom:Focusing on Students' Generative Question in Ill-Structured Problem (미래학교 수학교실의 교육 방법론에 대한 탐색:비구조화된 문제에서 학생들의 질문 만들기를 중심으로)

  • Na, Miyeong;Cho, Hyungmi;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.56 no.3
    • /
    • pp.301-318
    • /
    • 2017
  • This paper explores students' question generation process and their study in small group discussion. The research is based on Anthropological Theory of the Didactic developed by Chevallard. He argues that the savior (knowledge) we are dealing with at school is based on a paradigm that we prevail over whether we 'learn' or 'study' socially. In other words, we haven't provided students with autonomous research and learning opportunities under 'the dominant paradigm of visiting works'. As an alternative, he suggests that we should move on to a new didactic paradigm for 'questioning the world a question', and proposes the Study and Research Courses (SRC) as its pedagogical structure. This study explores the SRC structure of small group activities in solving ill-structured problems. In order to explore the SRC structure generated in the small group discussion, one middle school teacher and 7 middle school students participated in this study. The students were divided into two groups with 4 students and 3 students. The teacher conducted the lesson with ill-structured problems provided by researchers. We collected students' presentation materials and classroom video records, and then analyzed based on SRC structure. As a result, we have identified that students were able to focus on the valuable information they needed to explore. We found that the nature of the questions generated by students focused on details more than the whole of the problem. In the SRC course, we also found pattern of a small group discussion. In other words, they generated questions relatively personally, but sought answer cooperatively. This study identified the possibility of SRC as a tool to provide a holistic learning mode of small group discussions in small class, which bring about future mathematics classrooms. This study is meaningful to investigate how students develop their own mathematical inquiry process through self-directed learning, learner-specific curriculum are emphasized and the paradigm shift is required.

Development and Effectiveness of STEAM Outreach Program based on Mathematics (수학을 기반으로 하는 STEAM 아웃리치 프로그램 개발과 효과성)

  • Hwang, Sunwook;Kim, Namjun;Son, Jeongsuk;Song, Wonhee;Lee, Kapjung;Choi, Seongja;Lew, Kyounghoon
    • Communications of Mathematical Education
    • /
    • v.31 no.4
    • /
    • pp.389-407
    • /
    • 2017
  • Many researches related to STEAM education have been actively conducted for developing elementary and secondary school students' comprehensive and logical thinking ability in relation to creativity education in Korea. Each sub factor of STEAM education requires creative thinking with the ability to be merged together to solve problems as integrated or combined forms in the fields of Science, Technology, Engineering, Arts, and Mathematics. Also, these STEAM activities and experiences should be carried out at various places outside the classroom in school. Although various educational programs to enhance mathematical creativity have been emphasized for elementary and secondary school students, recent tendency to focus on classroom learning in the school makes it difficult to develop creative thinking ability of students. This research is mainly based on the result of the project "Development and Administration of STEAM Outreach Program in 2016" supported by KOFAC(Korea Foundation for the Achievement of Science & Creativity). The purpose of this research is to develop a STEAM outreach program including students' activity books, teachers' manuals and administration manual that can maximize STEAM-related interest of students, and to provide a chance for elementary and secondary school students to experience creative thinking based on sub factors of STEAM. The STEAM competency total score and the perception of convergence education were significantly increased for all students participating this program, but some sub factors showed different result by school levels. The STEAM outreach program developed by this study is designed to emphasize STEAM education especially 'based on' mathematics in order to provide students with the opportunity to experience more interest in the field of mathematics and will be able to provide an interesting creative STEAM outreach program that utilizes a variety of activities which, we expect, would help students to consider their career in the future.

Inductive Analysis Approach on Middle Grade Mathematics Pre-Service Teachers' Teaching Philosophies (중등 예비 수학 교사의 교육철학에 대한 귀납적 분석)

  • Han, Sunyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.599-615
    • /
    • 2015
  • Teachers' philosophies have not been emphasized enough in the current teacher education curriculum even though teacher's philosophy palys a critical role in schools and classrooms. The examination on pre-service teachers' teaching philosophies is necessary to improve teacher education curriculum so that teaching philosophies are often discussed in the courses of 'pedagogical content knowledge' as well as 'general education.' Therefore, the current study investigated 44 pre-service teachers' teaching philosophies, their sub domains, and relationships among the sub domains. The previous studies regarding mathematics teacher's teaching philosophy were more about 'teacher's belief' and employed deductive inference approach using surveys or questionnaires. These studies commonly pointed out that there were three major domains of 'belief on mathematics itself,' 'belief on teaching mathematics,' and 'belief on learning mathematics.' As these three domains of teacher's philosophy has been strengthened, there were very few studies examining the other potential domains of teacher's teaching philosophy. According to the findings of the present study, which employed inductive inference approach and pre-service teachers' free essay writing assignment, 'belief on teacher's role in mathematics classroom,' 'belief on the purpose of mathematics education,' and 'motivation to be a mathematics teacher' were additionally illuminated as sub domains of teacher's teaching philosophy. Moreover, the interrelationship among the sub-areas of teacher's teaching philosophy was disclosed. Specifically, 'belief on the purpose of mathematics education' and 'motivation to be a mathematics teacher' influenced the other sub domains. This implies that the relationships among the sub domains of teacher's teaching philosophy were more likely to be causal and vertical relationships rather than independent and parallel relationships. Finally, the findings from the current study provide implications indicating how pre-service teachers' teaching philosophies might be established in mathematics education courses for future research and education.

Exploring the Application of Generalizability Theory to Mathematics Teacher Evaluation for Professional Development in Korea Based on the Analysis of Instructional Quality Assessment of Mathematics Teachers in the U.S. (미국 수학교사의 교수 질 평가도구 분석을 통한 우리나라 수학 교원능력개발평가에서의 일반화가능도 이론 활용성 탐색)

  • Kim, Sungyeun
    • Communications of Mathematical Education
    • /
    • v.28 no.4
    • /
    • pp.431-455
    • /
    • 2014
  • The purpose of this study was to suggest methods to apply generalizability theory to mathematics teacher evaluation using classroom observations in Korea by analysing mathematics teachers in the U.S. using the instructional quality of assessment instrument as an illustrative example. The subjects were 96 teachers participating in Year 3 and Year 4 from the Middle-school Mathematics and the Institutional Setting of Teaching (MIST) project funded by the National Science Foundation since 2007. The MIST project investigates the following question: What does it takes to support mathematics teachers' development of ambitious and equitable instructional practices on a large scale (MIST, 2007). This study examined data based on both the univariate generalizability analysis using GENOVA program and the multivariate generalizability analysis using mGENOVA program. Specifically, this study determined the relative effects of each error source and investigated optimal measuring conditions to obtain the suitable generalizability coefficients. The methodology applied in this study can be utilized to find effective optimal measurement conditions for the mathematics teacher evaluation for professional development in Korea. Finally, this study discussed limitations of the results and suggested directions for future research.

An analysis of in-service teachers' perceived interactivity with AI teachers through RPP(Role-Play Presentation) (RPP(Role-Play Presentation)를 통한 교사의 AI 교사와의 지각된 상호작용성 분석)

  • Ko, Ho Kyoung;Huh, Nan;Noh, Jihwa
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.321-340
    • /
    • 2021
  • As many changes in the future society represented by the age of artificial intelligence(AI) are expected to come, efforts are being made to draw the shape of the future education and various research methods are being employed to support the attempts. While many research studies use methods for deriving generalized results such as expert survey and trend analysis in along with a review of literature, there are attempts to apply the scenario methodology to explore ideas and information needed within a changing context. A scenario method, one of the experiential learning strategies, aims to seek various and alternative approaches by establishing a plan from the present conditions considering future changes. In this study, in-service teachers' perceptions and expectations of the interactivity between human and AI teachers were visualized by applying the role-play presentation technique that grafted the concept of role-play game to the scenario method. In addition, the mandal-art method was introduced to support in conducting productive discussion during the teachers' collaboration. This method appeared to help to depict teachers' perceptions of AI teachers in the detailed and concrete form, which may flow in the abstract otherwise. Through analyses of the teachers' role-play presentations with the implementation of the madal-art method it was suggested that most teachers would want to collaborate with an AI teacher for improved instruction and individualized student learning while they would take the instructional authority over the AI teacher in the classroom.

The Impact of Integrating Engineering into Science Learning on Student's Conceptual Understandings of the Concept of Heat Transfer

  • Park, Mi-Sun;Nam, Youn-Kyeong;Moore, Tamara;Roehrig, Gillian
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.89-101
    • /
    • 2011
  • Science, Mathematics, Engineering, and Technology (STEM) integrated education has been spotlighted as a new approach for promoting students' conceptual understanding and supporting their future career in STEM field. There is increasing evidence of the positive impact of using a whole design process that can be an example of STEM integrated activities to improve students' conceptual understanding and problem solving skills. However, there is a lack of information on how teachers should accomplish science and engineering integration activities in their classroom and what process they should pay attention. To answer this question, we research the relationship between an design process and students' conceptual understanding using an engineering design activity, called 'Save the Penguins', and study on how each step in an engineering design process in this activity enhance students' conceptual knowledge in science. We found that testing their prototypes and discussing with their peers were the most important process for students to understand and apply science concept for their design, even though the whole engineering design process (demonstration about radiation, discussion about examples in our lives, and testing and reviewing their prototypes, and making final design) helps the students understand the scientific concepts.

Theoretical Benefits and Research Findings Underlying the Use of Microcomputer-Based Laboratory in Science Teaching

  • Han, Hyo-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.5
    • /
    • pp.957-969
    • /
    • 2002
  • Theoretical benefits and research findings on the use of Microcomputer-based Laboratory (MBL) are considered for using MBL in a way that will be of benefit to students and teachers, and discussed as a whole for further synthesis, including the formulation of a research agenda for future consensus-based action. Based on the findings obtained from a comprehensive review of the literature, using a systematic approach, the uses of MBL were compared and contrasted for advancing understanding of the teaching and learning processes in science and mathematics. A number of benefits were proposed by MBL developers but not investigated by educational researchers. A few research studies considered the following practical aspects raised by classroom science teachers: technical problems of MBL equipment; inaccuracy or incompleteness of presentation; efficient ways for handling class time with MBL instruction; and development of MBL curriculum materials for their own instruction. This lack of research related to the use of MBL in science classrooms resulted in educational research that was neither respected nor utilized by science teachers. Setting a research agenda based on the theoretical benefits and research findings is necessary for the effective use of MBL in science classrooms can help to maximize the prospects for successful school improvement projects while minimizing the innovation-related frustrations of individuals.

Student Teachers and Beginning Teachers' Understandings of Scientific Inquiry

  • Flick, Larry;Morrell, Patricia-D.;Wainwright, Camille;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.160-175
    • /
    • 2004
  • This study examined the knowledge and practices of scientific inquiry displayed by three student teachers and two beginning teachers at secondary levels. Observations using the instrument of OTOP designed by the research team of OCEPT (Oregon Collaborative for Excellent in the Preparation of Teachers) generalized similar teaching strategies of scientific inquiry between student and beginning teachers, such as using group work for students' first hand experience, using concrete materials for experimentation or visual tools for demonstration, using questions for factual knowledge mainly without opportunities to understand how scientific knowledge is constructed. Those scientific inquiry activities were very confirmative ones to follow the steps without opportunities of understanding nature of science or nature of scientific inquiry. However, all participants in this study hold knowledge of scientific inquiry envisioned by the National Science Education Standards [NSES] (NRC, 1996), where students identify their hypothesis, use critical and logical thinking, and consider alternative explanations through argumentation as well as experimentation. An inconsistent relationship between participating teachers knowledge and practices about scientific inquiry resulted from their lack of pedagogy skills of implementing it in the classroom. Providing opportunities for these teachers to reflect on their beliefs and practices about scientific inquiry was recommended for the future study. Furthermore, increasing college faculty interest in new teaching approaches for upgrading the content knowledge of student teachers and beginning teachers was recommended as a solution, since those teachers showed evidence of influence by college faculties at universities in their pedagogy skills.

A mathematics teacher's discursive competence on the basis of mathematical competencies (수학교과역량과 수학교사의 담론적 역량)

  • Choi, Sang-Ho;Kim, Dong-Joong
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.377-394
    • /
    • 2019
  • The purpose of this study is to scrutinize the characteristics of a teacher's discursive competence on the basis of mathematical competencies. For this purpose, we observed all semester-long classes of a middle school teacher, who changed her own teaching methods for the last 20 years, collected video clips on them, and analyzed classroom discourse. Data analysis shows that in problem solving competency, she helped students focus on mathematically important components for problem understanding, and in reasoning competency, there was a discursive competence which articulated thinking processes for understanding the needs of mathematical justification. And in creativity and confluence competency, there was a discursive competence which developed class discussions by sharing peers' problem solving methods and encouraging students to apply alternative problem solving methods, whereas in communication competency, there was a discursive competency which explored mathematical relationships through the need for multiple mathematical representations and discussions about their differences. These results can provide concrete directions to developing curricula for future teacher education by suggesting ideas about how to combine practices with PCK needed for mathematics teaching.

The Influence of Textbooks Applying Gamification Motivation Strategy on Learners' Interest: Social Textbooks for 3rd Graders in Elementary School (게이미피케이션 동기 전략을 적용한 교과서가 학습자의 흥미에 미치는 영향: 초등 3학년 사회 교과서를 중심으로)

  • Bang, Mi-Hyang
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.29-38
    • /
    • 2021
  • The social studies, mathematics, and science textbooks of the elementary curriculum will begin to be authorized from 2022. This study explores the effect of textbooks based on a gamification motivation strategy on learner interest. For this purpose, this study analyzes whether the systematic application of the gamification motivation strategy to elementary studies textbooks, which will be authorized from 2022, can develop this textbook into a "learner-centered curriculum book that induces interest." More specifically, this study applied Kumsung Publishing's experimental social studies textbooks in class and conducted a questionnaire among 121 third graders to verify the effectiveness of the textbooks. The results show that studies textbooks based on a gamification motivation strategy greatly influence increased learner interest in the classroom. The textbooks also represent a positive influence in learner understanding, interest, and curiosity regarding the class content and assistance. Demonstrating that gamification motivation strategy is worthwhile to actively apply in future textbook development for the enhancement of learners' interests, this study is significant in that it has presented a meaningful textbook development model.